Problem Set 5

Textbook questions are from "Galois Theory" (2nd edition) by Joseph Rotman.

- 1. Textbook exercise 63.
- 2. Textbook exercise 66.
- 3. Show that $x^4 + 1$ is irreducible over $\mathbb{Q}[x]$ but not over $\mathbb{R}[x]$.
- 4. Let $f(x) = x^3 + x^2 + x + 2$.
 - (a) Is f(x) irreducible over $\mathbb{Z}_5[x]$? Just from this answer can you conclude anything about irreducibility of f(x) over $\mathbb{Q}[x]$?
 - (b) Is f(x) irreducible over $\mathbb{Z}_3[x]$? Just from this answer can you conclude anything about irreducibility of f(x) over $\mathbb{Q}[x]$?
- 5. Let p be a prime of the form 4k + 3 for some $k \in \mathbb{Z}_{\geq 0}$. Show that $x^2 + 1$ is irreducible in $\mathbb{Z}_p[x]$.

Hint : multiplicative order of a root.