Problem Set 7

Textbook questions are from "Galois Theory" (2nd edition) by Joseph Rotman.

- 1. Textbook exercise 84.
- 2. Textbook exercise 85. Remark : Once you have solved these two exercises, I will recommend you to go through the proof of Lemma 73 one more time to better understand the result.
- 3. For the following polynomials in $\mathbb{Q}[x]$, determine the Galois group of their splitting fields over \mathbb{Q} . Justify your answers.
 - (a) $f(x) = (x^2 3)(x^2 5)(x^2 7)$
 - (b) $g(x) = \prod_{i=1}^{n} (x^2 p_i)$, where p_1, p_2, \dots, p_n are distinct primes.

(c)
$$h(x) = (x^2 + 3)(x^2 - 5)$$

4. Let $f(x), g(x) \in \mathbb{Q}[x]$ be solvable by radicals. Show that fg is solvable by radicals.

Hint: Let E, F, F' be the splitting fields of fg, f, g, over \mathbb{Q} , respectively. So F, F' are subfields of E. Show that $Gal(E/\mathbb{Q})$ is isomorphic to a subgroup of $Gal(F/\mathbb{Q}) \times Gal(F'/\mathbb{Q})$, i.e. there is an injective homomorphism $\phi : Gal(E/\mathbb{Q}) \to Gal(F/\mathbb{Q}) \times Gal(F'/\mathbb{Q})$.

- 5. Let $\alpha \in \mathbb{C}$ be constructible.
 - (a) Show that α is algebraic over \mathbb{Q} .
 - (b) If $p_{\alpha}(x)$ is the minimal polynomial of α over \mathbb{Q} , what can you say about $\partial(p_{\alpha})$? Use this to construct an algebraic number that is not constructible.
 - (c) Show that the angle 72° can be constructed using only a straightedge and a compass.

Hint : Show that θ can be constructed as an angle if $\cos \theta$ is constructible. You may use $\cos 72^{\circ} = \frac{\sqrt{5}-1}{4}$ to then show that it is constructible.

2% **Bonus Problem.** This problem is based on the following interesting question asked by a student during the lectures : Are subfields of a radical extension, radical ? The answer is no, and this problem is about producing an example.

- (a) Let $\zeta_7 = \cos \frac{2\pi}{7} + i \sin \frac{2\pi}{7}$ be a 7th root of unity. So $\mathbb{Q}(\zeta_7)$ is a radical extension. Consider the subfield $L = \mathbb{Q}(\zeta_7 + \zeta_7^{-1}) \subseteq \mathbb{Q}(\zeta_7)$. Show that $[L : \mathbb{Q}] = 3$.
- (b) So there are no proper subfields between, $\mathbb{Q} \subseteq L$. If L was radical, it must be a pure extension, i.e. $L = \mathbb{Q}(\alpha)$ with $\alpha^n \in \mathbb{Q}$ for some n. Show that n = 3.

Hint : *Minimal polynomial of* α *is of degree 3. Figure out what its roots look like. Note* $L \subseteq \mathbb{R}$ *, and only real roots of unity are* ± 1 *.*

(c) Derive a contradiction by showing that the minimal polynomial of α must have repeated roots then.