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The coefficients that appear in the Laurent series of Dedekind zeta func-

tions and their logarithmic derivatives are mysterious and seem to contain

a lot of arithmetic information. Although the residue and the constant

term have been widely studied, not much is known about the higher

coefficients. In this thesis, we study these coefficients γK,n that appear in

the Laurent series expansion of ζ ′K(s)
ζK(s)

about s = 1, where K is a global field.

For example, when K is a number field, we unconditionally prove certain

arithmetic formulas satisfied by these coefficients and we give bounds for

them under GRH. Analogous bounds for function fields of curves defined

over a finite field are also shown.

We also study the distribution of values of higher derivatives of L(s, χ) =

L′(s, χ)/L(s, χ) at s = 1 where χ ranges over all non-trivial Dirichlet char-

acters with a given large prime conductor m. In particular, we compute

moments, i.e. the average of P(a,b)(L(n)(1, χ)), where P(a,b)(z) = zazb and

study their asymptotic behaviour as m→ ∞. We then construct a density

function Mσ(z), for σ = Re(s) and show that for Re(s) > 1

AvgχΦ(L′(s, χ)) =
∫

C
Mσ(z)Φ(z)|dz|

holds for any continuous function Φ on C.
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1
I N T R O D U C T I O N

Since the advent of analytic number theory, the study of zeros of zeta and
L-functions have engaged number theorists, perhaps more than any other
theme. The famous Riemann hypothesis has been an open problem for
more than 160 years now. A new approach to this problem was presented
by Xian-Jin Li [Li97] in 1997, who showed that positivity of a sequence of
coefficients coming from the Laurent series expansion, about s = 1, of the
logarithmic derivative of these zeta functions is equivalent to the Riemann
hypothesis. Later, Brown in [Bro05] proved an effective version of Li’s
criterion relating positivity of the first finitely many terms in the sequence,
to zero-free regions. This thesis is concerned with studying these higher
coefficients.

1.1 organization of chapters

In this introductory Chapter 1, we give a brief review of some well known
results that will be useful for our later journey, as well as present the key
motivation that led to this study. We then present a summary of our main
results of this thesis.

Chapter 2 is about studying the higher Euler-Kronecker constants (to be
defined in the next section) of a number field. In particular, after presenting
some preliminary facts and Ihara’s work on the constant term in sections
2.1 and 2.2 we focus on the first Euler-Kronecker constant in section 2.3.
We then derive upper bounds (under GRH) in section 2.4. In 2.5 we derive,
unconditionally, an arithmetic formula satisfied by this constant. In the
subsequent sections 2.6 etc., we generalize these results, deduced in the
previous sections, for higher constants.

1



1.2 some background and motivation 2

Chapter 3 is a similar study in the case of a function field of a curve
defined over a finite field. We prove analogous bounds.

In Chapter 4 we focus on Dirichlet L-functions. Again, section 4.1 - 4.3
is focused on deriving similar arithmetic formulas for these coefficients.
The key new results in this chapter are on moments. After giving some
historical background in section 4.4, we compute moments of L′(1, χ) in
section 4.5 under GRH, where L(s, χ) = L′(s, χ)/L(s, χ). We then use zero
sum estimates to prove an unconditional version of our result in section
4.6. Finally, we generalize these results to moments of higher derivatives
in section 4.7.

Chapter 5 is on distribution of values of these higher derivatives of the
logarithmic derivative of Dirichlet L-functions near s = 1. The main result
is in section 5.3, and it is about showing the existence of a distribution
function for the first derivative, for Re(s) > 1. In section 5.4 we briefly
discuss potential generalization to higher derivatives. Finally in the con-
cluding section 5.5 we discuss future work and issues on extension of our
result to parts of the critical strip : 1

2 < Re(s) ≤ 1.

1.2 some background and motivation

Let K be an algebraic number field of finite degree nK over Q. The
Dedekind zeta function of K is defined as

ζK(s) = ∑
a

(Na)−s

for Re(s) > 1, where the sum is taken over all integral ideals a of OK, the
ring of integers of K. It also satisfies the Euler product formula

ζK(s) = ∏
p

(
1− 1

Nps

)−1



1.2 some background and motivation 3

Hecke showed that (s− 1)ζK(s) extends to an entire function. There is a
simple pole of ζK(s) at s = 1 and the residue satisfies the famous class
number formula :

lim
s→1

(s− 1)ζK(s) =
2r1(2π)r2 hR

ω
√
|dK|

where r1 denotes the number of real embeddings of K, 2r2 is that of
complex embeddings, h is the class number, R is the regulator, ω is the
number of roots of unity, and dK is the discriminant of K.
For the logarithmic derivative one can write :

− ζ ′K(s)
ζK(s)

= ∑
a

Λ(a)

Nas (1.1)

Λ(.) being the number field analogue of the von Mangoldt function given
by :

Λ(a) =

log Np if a = pk for some prime ideal p

0 otherwise.

For the sake of completeness, we also recall that by applying the Tauberian
theorem to the above (1.1), one can deduce the number field analogue of
the prime number theorem, namely the prime ideal theorem :

Theorem 1.2.1. Let πK(x) be the number of prime ideals of OK with norm
less than or equal to x. Then

πK(x) ∼ x
log x

as x → ∞

For details on the above discussion, one may refer to any standard text-
book on analytic number theory, for example [Dav00], [CF76] or [MM97].

The generalized Riemann hypothesis (GRH) states that all non-trivial
zeros (i.e. those in the critical strip) of the Dedekind zeta function is on
the s = 1

2 line.

Consider the (analytic) completed zeta function :

ξK(s) = s(s− 1)2r2

( √
|dK|

2r2 πn/2

)s

Γ
( s

2

)r1
Γ(s)r2 ζK(s)



1.2 some background and motivation 4

where [K : Q] = nK. In [Li97], Li introduced the following sequence of
numbers {λn}, now known as Li’s coefficients :

λn =
1

(n− 1)!
dn

dsn

(
sn−1 log ξK(s)

) ∣∣∣
s=1

for n ≥ 1 (1.2)

and showed the following theorem

Theorem 1.2.2. (Li’s Criterion) The general Riemann hypothesis for ζK(s)
holds iff λn is non-negative for all n ≥ 1.

Later Bombieri and Lagarias also gave an alternative proof in [BL99].
Andrew Droll, in his PhD thesis formulated a much more generalized Li’s
Criterion for generalized quasi-Riemann hypothesis for functions in an
extension of the Selberg class.

Brown in [Bro05] proved an effective version of Li’s theorem, showing
positivity of the first few λi’s, give zero-free regions of a certain shape
around s = 1. In particular he showed, just λ2 ≥ 0 implies non-existence
of the exceptional Siegel zeros. We recall, a well-known result of Stark says
that for 0 < c < 1

4 , ζK(s) has at most one zero in the region

1− c
log dK

≤ σ ≤ 1, |t| ≤ c
log dK

where s = σ + it. This zero, if it exists, is necessarily real and simple. We
call this an exceptional Siegel zero.

Note that, if we write the Laurent series about s = 1 of the logarithmic
derivative of ζK(s), then λ2 involves the constant term and the first coeffi-
cient (that is the coefficient of (s− 1)) together with some terms coming
from the Γ- factors . This was our primary motivation to closely study this
first coefficient. We later found that many of our results easily generalized
to higher coefficients. A path was already led out by Ihara et. al. who, in a
series of papers, systematically studied the constant term, which he called
the Euler-Kronecker constant. We define
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Definition 1.2.3. Let the Laurent series of the logarithmic derivative of
ζK(s) about s = 1 be given by

ζ ′K(s)
ζK(s)

=
−1

s− 1
+ γK,0 +

∞

∑
m=1

γK,n(s− 1)m (1.3)

γK,m will be called the m-th Euler-Kronecker constant.

Remark 1.2.4. It is worth pointing out that this thesis does not deal with
the subtleties of sign of these coefficients as Li’s criterion demands. Instead
we seek to motivate the readers to study them. These coefficients are
coming from very local information, only at s = 1. And somehow they are
able to capture what is happening at s = 1

2 , giving us information about
all zeros! We think, in future one might able to deduce zero-free regions
and other interesting results from bounds on them and not just signs. This
thesis therefore seeks to present a preliminary study of these constants.

The first thing we showed were certain arithmetic formulas for γK,m.
The author was later made aware that similar formulas for ζ(s) and ζK(s)
exists in the literature and so, we end this section with a few of those.

Suppose we write

ζ(s) =
1

s− 1
+ γ +

∞

∑
n=1

sn(s− 1)n

In 1885, T. J. Stieltjes [HS05] showed that

sn =
(−1)n

n!
lim
x→∞

(
x

∑
m=1

(log m)n

m
− (log x)n+1

n + 1

)

These sn are called the Stieltjes constants, the generalized Euler constants
or sometimes the Euler-Stieltjes constants. For the Dedekind zeta function,
let us write

ζK(s) =
∞

∑
n=−1

sK,n(s− 1)n

The author found a similar formula in a much recent paper and does not
know if similar formula has been written down in the past. The following
is due to Eddin, see Theorem 2 of [Edd18].
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sK,n =
(−1)n

n!
lim
x→∞

(
∑

Na≤x

(log Na)n

Na
− sK,−1

(log x)n+1

n + 1

)
for n ≥ 1

and

sK,0 = lim
x→∞

(
∑

Na≤x

1
Na
− sK,−1 log x

)
+ sK,−1

The following formula for the logarithmic derivative of the Riemann zeta
function is also known. Let

ζ ′(s)
ζ(s)

=
−1

(s− 1)
+

∞

∑
n=0

γn(s− 1)n

then

γn =
(−1)n−1

n!
lim
x→∞

(
∑

m<x

Λ(m)(log m)n

m
− (log x)n+1

n + 1

)
For a proof see [Tit58].

The author is not aware of existence of a similar formula for Dedekind
zeta functions. The formulas we deduced are similar but a bit more
involved.

1.3 statement of main results

Our first result is the following formula :

Theorem 1.3.1. (Unconditionally)

γK,1 = lim
x→∞

[
ΨK(x)− 1− 1 + x

1− x
log x− 1

2
(log x)2

]

where, ΨK(x) =
1

x− 1 ∑
k, N(P)k≤ x

(
x

N(P)k − 1
)

k(log N(P))2 for x > 1

Theorem 1.3.2. Under GRH, for |dK| > 8 and writing αK = log
√
|dK|,

we have

|γK,1| ≤ 2(log αK)(2 log αk − γK,0) + 18 log αK + O
(
(log αK)

2

αK

)
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Corollary 1.3.3. When γK,0 ≥ 0, we get, (under GRH and for |dK| > 8 )

γK,1 �
(

log log
√
|dK|

)2

Similarly for the general case we write :

ΨK(m, x) =
1

x− 1 ∑
k, N(P)k≤ x

(
x

N(P)k − 1
)

km(log N(P))m+1 for x > 1

Theorem 1.3.4. (Unconditionally)

γK,m + (−1)m = lim
x→∞

1
m!

[
(−1)m+1ΨK(m, x) +

f (m, x)
(x− 1)

]
(1.4)

where f (m, x) is recursively defined as :

f (m, x) =
(−1)m

m + 1
(x− 1)(log x)m+1 + (−1)m+1(x + 1)(log x)m + m(m− 1) f (m− 2, x)

f (1, x) = (1− x)
[

2 +
1 + x
1− x

log x +
1
2
(log x)2

]
f (0, x) = (x− 1) log(x)

Theorem 1.3.5. Under GRH, for |dK| > 8, and m ≥ 1 we have

γK,m �
2m

m!
(log(2m(m!)2) + log αK)

m (2 log(2m(m!)2) + 2 log αK − γK,0 + 1
)

where as before, αK = log
√
|dK|.

As a corollary we have :

Corollary 1.3.6. When γK,0 ≥ 0 we get, (under GRH and for |dK| > 8)

γK,m �
2m+1

m!
(log(2m(m!)2) + log αK)

m+1

In particular, for m� log dK
log log dK

, we have

γK,m �
2m+1

m!
(log log dK)

m+1
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We also prove analogous bounds in the function field case (uncondi-
tional, GRH being known). For example if K is the function field of a curve
X of genus g, over Fq, q being a prime power then :

Theorem 1.3.7. For g > 2 or, g = 2 and q > 2, and writing
αK = (g− 1) log q , we have

γK,n + (−1)n � 2
n!
(log(n!2n+1αK))

n(2 log(αK)− γK,0 + log q + 1 + n!2n)

Remark 1.3.8. All implicit constants in the above results are absolute.

Remark 1.3.9. Just for consistency and clarity of notation, let us mention
that, by a � b we mean that there exists a positive constant c such that
|a| ≤ cb. Sometimes we also might have used the big-O notation. They
mean the same thing, i.e. a = O(b) ⇐⇒ a� b.

We then turn our attention to distribution of values of these higher
coefficients. For this we consider the following setting : let K be a number
field and χ be a primitive Dirichlet character on K. Let L(s, χ) be the
L-function associated to it. For notational brevity we’ll write

L(s, χ) :=
L′(s, χ)

L(s, χ)

Initially we proved similar formulae and bounds like that of γK,n, namely,

L(n)(1, χ) = lim
x→∞

(−1)n+1 ΨK(χ, n, x)

where

ΨK(χ, n, x) =
1

x− 1 ∑
k, N(P)k< x

kn
(

x
N(P)k − 1

)
χ(P)k(log N(P))n+1

But our main goal was to compute moments for the higher derivatives,
motivated by the work of Ihara, Murty and Shimura, who in [IMS09],
computed moments of L(1, χ).

For this section we work with K = Q. Let m be a prime and Xm denote
the set of all non-principal multiplicative characters χ : (Z/mZ)× → C×

and L(s, χ) denote the corresponding Dirichlet L-function. For any pair of
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non-negative integers (a, b) let P(a,b)(z) = zazb. We showed :

Theorem 1.3.10. For any ε > 0 we have, unconditionally,

1
|Xm| ∑

χ∈Xm

P(a,b)(L(r)(1, χ)) = (−1)(r+1)dµ(a,b)(r) + O
(

mε−1
)

The implicit constant depends on a, b only. Under GRH, the error term is

O

(
(log m)(r+1)d+2

m

)

with d = a + b. In particular, letting m→ ∞ we get

lim
m→∞

1
|Xm| ∑

χ∈Xm

P(a,b)(L(r)(1, χ)) = (−1)(r+1)dµ(a,b)(r)

Here µ(a,b)(r) is the following explicitly computable constant :

µ(a,b)(r) =
∞

∑
j=1

`rΛa(j) `rΛb(j)
j2

where for k > 0, r ≥ 0

`rΛk(n) = ∑
n1n2···nk=n

(
k

∏
i=1

Λ(ni)(log ni)
r

)

whereas, for k = 0, `rΛ0(n) = 1 for n = 1 and 0 for n > 1.

Note : `rΛa(.) is just notation. We are not actually multiplying by some `r or
anything. The logarithm appears with exponent r in the above formula together
with Λ(.), this is just a way of book keeping.

We then focus on the distribution of values of these higher derivatives
of the logarithmic derivative of Dedekind zeta functions, in particular we
show the existence of a density function for Re(s) > 1.

Let K be either Q or an imaginary quadratic number field. Let χ run
over all Dirichlet characters on K whose conductor (the non-archimedean
part) is a prime divisor, such that χ(℘∞) = 1. We define the average of
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a complex valued function φ(χ), over a family of χ as defined above, as
follows :

Avgχφ(χ) = lim
m→∞

AvgN(f)≤mφ(χ)

where

AvgN(f)≤mφ(χ) =
∑N(f)≤m

(
∑fχ=f φ(χ)

)
/ ∑fχ=f 1

∑N(f)≤m 1

Then the main result in this chapter states that,

Theorem 1.3.11. For any s ∈ C with σ = Re(s) > 1 there exists a function
Mσ : C→ R satisfying, Mσ(w) ≥ 0, and

∫
C

Mσ(w) |dw| = 1, such that

Avgχ Φ(L′(χ, s)) =
∫

C
Mσ(w) Φ(w) |dw| (1.5)

holds for any continuous function Φ of C.

Note that Mσ is constructed as the limit of Mσ,P functions, where P is a
finite set of non-archimedean primes. The Fourier dual of Mσ(z) given by

M̃σ(z) =
∫

C
Mσ(w)ψz(w)|dw|

where ψz : C → C1 is the additive character ψz(w) = exp(i · Re(zw)),
satisfies the following :

M̃σ(z) = Avgχ ψz(L′(χ, s))



2
H I G H E R E U L E R - K R O N E C K E R
C O N S TA N T S : N U M B E R F I E L D C A S E

2.1 preliminaries

Let K be an algebraic number field. The Dedekind zeta function ζK(s) has
a simple pole at s = 1 and (s− 1)ζK(s) extends to an entire function in the
complex plane. Therefore one can write a Laurent series of ζK(s) about
s = 1 as follows :

ζK(s) =
c−1

s− 1
+ c0 + c1(s− 1) + c2(s− 1)2 + · · · (c−1 6= 0) (2.1)

In [Iha06], Ihara studied the constant γK = c0/c−1 attached to K and called
it the Euler-Kronecker constant. Note that the logarithmic derivative of ζK(s)
also has a simple pole at s = 1, the key difference being, the residue is
then just −1. We can write down a Laurent series for ζ ′K(s)/ζK(s) about
s = 1, turns out the constant of this series is γK. Our work in this chapter
is to analyze the coefficients of higher powers of (s− 1). We will refer to
these as general or higher Euler-Kronecker constants.

Definition 2.1.1. Let the Laurent series of the logarithmic derivative of
ζK(s) about s = 1 be given by

ζ ′K(s)
ζK(s)

=
−1

s− 1
+ γK,0 +

∞

∑
m=1

γK,m(s− 1)m (2.2)

γK,m will be called the m-th Euler-Kronecker constant.

For K = Q, the constant term is the famous Euler-Mascheroni constant

γQ,0 = γ = lim
n→∞

(
1 +

1
2
+

1
3
+ · · ·+ 1

n
− log n

)
= 0.57721566 · · ·

We now describe some results obtained by Ihara on γK,0.

11
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2.2 some background : ihara’s work on γK ,0

We first note that :

γK,0 = lim
s→1

(
ζ ′K(s)
ζK(s)

+
1

s− 1

)
On the other hand using a lemma of Stark, (Lemma 3 in [Sta74]) we get

− ζ ′K(s)
ζK(s)

=
1
s
+

1
s− 1

−∑
1

s− ρ
+ αK + βK + Γ̃K(s) (2.3)

where the sum runs over all non-trivial zeros ρ of ζK(s), counted with
multiplicities. Note that this result is just a consequence of Hadamard
factorization. Also, in the above,

αK =
1
2

log |dK|, dK being the absolute discriminant of K ;

βK = −
{ r1

2
(γ + log 4π) + r2(γ + log 2π)

}
Γ̃K(s) =

r1

2

(
g
( s

2

)
− g

(
1
2

))
+ r2 (g(s)− g(1)) where g(s) =

Γ′(s)
Γ(s)

where K has r1 real conjugate fields and 2r2 complex conjugate fields, and
γ = γQ,0 as before. Thus taking the 1

s−1 to other side and letting lim s→ 1
we get,

−γK,0 = 1−∑
ρ

1
1− ρ

+ αK + βK

⇒ 1
2 ∑

ρ

1
ρ(1− ρ)

= γK,0 + αK + βK + 1 (2.4)

Notice that Γ̃K(1) = 0. Equation (2.4) will be used in a later section while
finding upper bounds of certain terms.

Ihara proved the following bounds for γK,0 in [Iha06], e.g. see Theorem 1

and Proposition 3. (Although the lower bound mentioned below is trivial,
as the left hand side of (2.4) above is positive.)
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Theorem 2.2.1. (Ihara) For nK = [K : Q] > 2 or, nK = 2 and |dK| > 8, we
have (the constants c1, c2 below are absolute)

γK,0 ≤ c1 log log
√
|dK| (under GRH)

≥ −c2 log
√
|dK| (unconditionally)

To demonstrate that the general (negative) lower bound cannot be so
close to 0 as the upper we note that

−0.26049... ≤ lim inf
γK,0

log
√
|dK|

≤ −0.17849...

The left side inequality is under GRH, the right side is unconditional, both
due to Tsfasman e.g. see [Tsf06].

We quote a few other results from Ihara’s paper [Iha06], as we will either
use them in subsequent sections or prove analogous versions for higher
Euler-Kronecker constants. Consider the prime counting function

ΦK(x) =
1

x− 1 ∑
k, N(P)k≤ x

(
x

N(P)k − 1
)

log N(P) ( for x > 1 )

where P runs over non-archimedean primes of K and k over positive
integers such that N(P)k ≤ x. For large x, this function behaves like log x,
in fact Ihara shows the following formula unconditionally :

lim
x→∞

(log x−ΦK(x)) = γK,0 + 1 (2.5)

One also has the following upper bound on ΦK(x)

ΦK(x) ≤ log x−
√

x− 1√
x + 1

(γK,0 + 1) +
2√

x + 1
(αK + βk) +

nK(log x + 1)
x− 1

(2.6)
This is a consequence of Main Lemma (see 1.5.6) and Lemma 2 of [Iha06].

In the subsequent sections, we will first investigate the next coefficient
γK,1 and will then try to see whether the methods used can be generalized.
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2.3 setting the stage for γK ,1

Recall, we wrote

ζ ′K(s)
ζK(s)

+
1

s− 1
= γK,0 +

∞

∑
m=1

γK,m(s− 1)m (2.7)

Taking derivative and letting lim s→ 1 we get,

lim
s→1

[
d
ds

ζ ′K(s)
ζK(s)

− 1
(s− 1)2

]
= γK,1 (2.8)

From the Euler product, one has

− ζ ′K(s)
ζK(s)

= ∑
P, k≥1

log N(P)
N(P)ks

For brevity of notation, we will denote the left hand side by ZK(s), i.e.

ZK(s) = −
ζ ′K(s)
ζK(s)

Thus taking derivative, one has

Z′K(s) = ∑
P,k≥1

−k(log N(P))2

N(P)ks (2.9)

On the other hand, differentiating the expression obtained from the
Hadamard product as in (2.3) we get,

Z′K(s) = −
1
s2 −

1
(s− 1)2 + ∑

1
(s− ρ)2 + Γ̃′K(s) (2.10)

with Γ̃′K(s) =
r1
4 g′

( s
2

)
+ r2g′(s), where, as before g(s) = Γ′

Γ (s).

Taking the 1
(s−1)2 on the other side and letting lim s→ 1, the left hand

side becomes −γK,1. Thus we have

γK,1 = 1−∑
1

(1− ρ)2 − Γ̃′K(1) (2.11)
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We wish to find a similar arithmetic formula as in (2.5) and bounds for
γK,1. To do so, we consider the integral

Ψ(µ)
K (x) =

1
2πi

∫ c+i∞

c−i∞

xs−µ

s− µ
Z′K(s) ds for c� 0

for µ = 0 and 1 and evaluate the expression xΨ(1)
K (x)− Ψ(0)

K (x) in two
different ways using equation (2.9) and equation (2.10). Note that by c� 0,
we just mean that we are considering the integral on a line s = c, far to
the right of 1.

The following classical formulas will be of help.

1
2πi

∫ c+i∞

c−i∞

ys

s
ds =


0 0 < y < 1
1
2 y = 1

1 y > 1

(2.12)

And for n ≥ 1,

1
2πi

∫ c+i∞

c−i∞

ys

sn+1 ds =

0 0 < y ≤ 1
1
n! (log y)n y > 1

(2.13)

Using the expression for Z′K(s) from (2.9) we get :

xΨ(1)
K (x)−Ψ(0)

K (x) = x · ∑
P,k≥1

−k(log N(P))2

N(P)k

[
1

2πi

∫ c+∞

c−i∞

1
s− 1

(
x

N(P)k

)s−1

ds

]

− ∑
P,k≥1

−k(log N(P))2
[

1
2πi

∫ c+∞

c−i∞

1
s

(
x

N(P)k

)s

ds
]

= x · ∑
k, N(P)k< x

−k(log N(P))2

N(P)k + ∑
k, N(P)k=x

−k(log N(P))2

2

− ∑
k, N(P)k< x

−k(log N(P))2 − ∑
k, N(P)k=x

−k(log N(P))2

2

= ∑
k, N(P)k≤ x

(
x

N(P)k − 1
)
(−k(log N(P))2)
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Looking at the above computation, we define :

ΨK(x) =
1

x− 1 ∑
k, N(P)k≤ x

(
x

N(P)k − 1
)

k(log N(P))2 for x > 1

(2.14)

Remark 2.3.1. The reason for dividing by (x− 1) will become apparent
while computing xΨ(1)

K (x)−Ψ(0)
K (x) the other way. For now we have,

xΨ(1)
K (x)−Ψ(0)

K (x) = −(x− 1)ΨK(x) (2.15)

Now using the expression for Z′K(s) from (2.10) we get :

xΨ(1)
K (x)−Ψ(0)

K (x) =
x

2πi

∫ c+i∞

c−i∞

xs−1

s− 1

[
− 1

s2 −
1

(s− 1)2 + ∑
1

(s− ρ)2 + Γ̃′K(s)
]

ds

− 1
2πi

∫ c+i∞

c−i∞

xs

s

[
− 1

s2 −
1

(s− 1)2 + ∑
1

(s− ρ)2 + Γ̃′K(s)
]

ds

Let us first look at the contribution from the term : − 1
s2 −

1
(s− 1)2

∫
xs
[
− 1

s2(s− 1)
− 1

(s− 1)3 +
1
s3 +

1
s(s− 1)2

]
ds

=
∫

xs
[

1
s2 +

1
s
− 1

(s− 1)
− 1

(s− 1)3 +
1
s3 +

1
(s− 1)2 −

1
s− 1

+
1
s

]
ds

= 2
∫ xs

s
ds − 2x

∫ xs−1

s− 1
ds +

∫
xs
[

1
s2 +

1
(s− 1)2

]
ds +

∫
xs
[

1
s3 −

1
(s− 1)3

]
ds

(Thus using the classical formulas as in (2.12) and (2.13) we have )

= 2− 2x + log x(1 + x) +
1
2
(log x)2(1− x)

= (1− x)
[

2 +
1 + x
1− x

log x +
1
2
(log x)2

]
:= f (x) (say)

(2.16)
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Note that
f (x)

(x− 1)
� (log x)2 (2.17)

Now we focus on the contribution from the ∑ρ term. Recall we’re trying
to evaluate

x
2πi

∫ c+i∞

c−i∞

xs−1

s− 1 ∑
1

(s− ρ)2 ds − 1
2πi

∫ c+i∞

c−i∞

xs

s ∑
1

(s− ρ)2 ds

We will do some contour manipulation for this. As in Figure 2.1 (below),
for large T and R (to be chosen later), take the contour CR,T to be the
rectangle : c− iT → c + iT → −R + iT → −R− iT → c− iT.

Re(s)

Im(s)

c− iT

c + iT−R + iT

−R− iT

O
1
2 1−1−2−3· · ·

Figure 2.1

We’re interested only in the side c− iT → c + iT. We’ll show that for
specific choice of R, the contribution from the other three sides of the
rectangle goes to 0 as T → ∞.

On the side {−R+ iT → −R− iT}, writing ρ = β+ iγ and s = −R+ it
and so, ds = idt we have,∣∣∣∣∫ −R−iT

−R+iT

xs

s
· 1
(s− ρ)2 ds

∣∣∣∣ ≤
∫ T

−T

x−R
√

R2 + t2((R + β)2 + (t− γ)2)
dt

≤ x−R

R3

∫ T

−T
dt ≤ 2x−R T

R3
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Similarly, for the integral on {c + iT → −R + iT}, writing s = σ + iT∣∣∣∣∫ −R+iT

c+iT

xs

s
· 1
(s− ρ)2 ds

∣∣∣∣ ≤
∫ −R

c

xσ

√
σ2 + T2((σ− β)2 + (T − γ)2)

dσ

≤ xc

T

∫ −R

c

dσ

(σ− β)2 =
xc

T

[
−1

σ− β

]−R

c

=
xc

T

[
−1
−R− β

+
1

c− β

]
=

xc

T

[
1

R + β
+

1
c− β

]

=
xc

T
c + R

(R + β)(c− β)
� xc

T

Note that the last inequality follows from, 0 < β < 1 and we can choose
c ≥ 2, so that c− β ≥ 1, whereas, c+R

R+β � 1.

Similarly, writing s = σ− iT, we have∣∣∣∣∫ c−iT

−R−iT

xs

s
· 1
(s− ρ)2 ds

∣∣∣∣ ≤
∫ c

−R

xσ

√
σ2 + T2((σ− β)2 + (T + γ)2)

dσ

≤ xc

T

∫ −R

c

dσ

(σ− β)2 �
xc

T

as before. Thus by choosing R = T and letting, T → ∞ we see that these
integrals go to zero. Therefore by residue theorem, the line integral on
s = c is same as the residue at the poles to the left of c.

Now let us compute these residues.

The pole at s = 0 has residue :
1
ρ2 .

The pole at ρ (double pole) has residue : lims→ρ
d
ds

(
xs

s
) =

ρxρ log x− xρ

ρ2

(Computations for s = 1 are exactly similar).

Therefore by Residue theorem, net contribution from the ∑ρ term is given
by :
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x
[
∑

1
(ρ− 1)2 + ∑

(ρ− 1)xρ−1 log x− xρ−1

(ρ− 1)2

]
−
[

∑
1
ρ2 + ∑

ρxρ log x− xρ

ρ2

]

= (x− 1)∑
1

(1− ρ)2 + ∑
ρ2(ρ− 1)xρ log x− ρ2xρ − ρ(ρ− 1)2xρ log x + (ρ− 1)2xρ

ρ2(ρ− 1)2

= (x− 1)∑
1

(1− ρ)2 + ∑
ρ(ρ− 1)xρ log x(ρ− ρ + 1)− ρ2xρ + (ρ− 1)2xρ

ρ2(ρ− 1)2

= (x− 1)
[
∑

ρ(ρ− 1) log x− ρ2 + (1− ρ)2

ρ2(1− ρ)2 · xρ

x− 1
+ ∑

1
(1− ρ)2

]

= (x− 1)
[

r(x) + ∑
1

(1− ρ)2

]
(say)

(2.18)

So we are defining everything except the ∑
1

(1− ρ)2 term, in the previous

expression as r(x), i.e.

r(x) = ∑
ρ(ρ− 1) log x− ρ2 + (1− ρ)2

ρ2(1− ρ)2 · xρ

x− 1
(2.19)

For the Gamma term, we first recall

Γ̃K(s) =
r1

2

[
g
( s

2

)
− g

(
1
2

)]
+ r2 [g(s)− g(1)]

where g(s) = Γ′
Γ (s) is the digamma function. Thus, taking derivative we

get,
Γ̃′K(s) =

r1

4
g′
( s

2

)
+ r2 g′(s)

We look at the series expansion of Γ′
Γ (s) and its derivative.

Γ′

Γ
(s) = g(s) = −γ−

∞

∑
k=0

(
1

s + k
− 1

1 + k

)
⇒ g′(s) =

∞

∑
k=0

1
(s + k)2
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Note that the above series expansion of digamma is valid in the entire com-
plex plane except for non-positive integers. i.e. in C \ {0,−1,−2,−3, · · · }.

Therefore we have

Γ̃′K(s) =
r1 + r2

s2 + r1

(
∞

∑
n=1

1
(s + 2n)2

)
+ r2

(
∞

∑
n=1

1
(s + n)2

)

We want to compute :

x
2πi

∫ c+i∞

c−i∞

xs−1

s− 1
Γ̃′K(s) ds − 1

2πi

∫ c+i∞

c−i∞

xs

s
Γ̃′K(s) ds

We compute the contribution from the three constituent terms of Γ̃K(s), as
above, individually.

(r1 + r2)

[
x

2πi

∫ c+i∞

c−i∞

xs−1

s2(s− 1)
ds − 1

2πi

∫ c+i∞

c−i∞

xs

s3 ds
]

= (r1 + r2)

[
x

2πi

∫ c+∞

c−i∞
xs−1

(
1

s− 1
− 1

s
− 1

s2

)
ds − 1

2
(log x)2

]
= (r1 + r2)

[
x− 1− log x− 1

2
(log x)2

]

Note that for the two series we can again refer to Figure 2.1 and use similar
residue computations as 1

(s−ρ)2 with ρ = −2n and ρ = −n.

For example, for ρ = −n, the term will be :

r2(x− 1)

[
∞

∑
n=1

n(n + 1) log x− n2 + (1 + n)2

n2(1 + n)2 · x−n

x− 1
+

∞

∑
n=1

1
(1 + n)2

]
− r2

Thus we putting these together we get,
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x
2πi

∫ c+i∞

c−i∞

xs−1

s− 1
Γ̃′K(s) ds − 1

2πi

∫ c+i∞

c−i∞

xs

s
Γ̃′K(s) ds

= (r1 + r2)(x− 1)
[

1− 1
x− 1

log x− 1
2(x− 1)

(log x)2
]

+ r1(x− 1)

[
∞

∑
n=1

2n(2n + 1) log x− 4n2 + (1 + 2n)2

4n2(1 + 2n)2 · x−2n

x− 1
+

∞

∑
n=1

1
(1 + 2n)2

]

+ r2(x− 1)

[
∞

∑
n=1

n(n + 1) log x− n2 + (1 + n)2

n2(1 + n)2 · x−n

x− 1
+

∞

∑
n=1

1
(1 + n)2

]

+ r1

[
∞

∑
n=1

1
(1 + 2n)2 −

∞

∑
n=1

1
4n2

]
− r2

= (x− 1)
[
`(x) + Γ̃′K(1)

]
(say)

(2.20)

The idea here is the same as the non-trivial zero case, we are isolating
Γ̃′K(1) and denoting the rest of the expression by `(x).
Note that, Γ̃′K(1) = (r1 + r2) + r1 ∑∞

n=1
1

(1+2n)2 + r2 ∑∞
n=1

1
(1+n)2 .

Thus,

`(x) = − r1 + r2

x− 1

[
log x +

1
2
(log x)2

]
+

r1

x− 1

[
∞

∑
n=1

1
(1 + 2n)2 −

∞

∑
n=1

1
4n2

]

+ r1

[
∞

∑
n=1

2n(2n + 1) log x− 4n2 + (1 + 2n)2

4n2(1 + 2n)2 · x−2n

x− 1

]

+ r2

[
∞

∑
n=1

n(n + 1) log x− n2 + (1 + n)2

n2(1 + n)2 · x−n

x− 1

]
− r2

x− 1
(2.21)

As we’ll soon see, although the above expressions look complicated,
they can be very easily estimated.
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Putting equations (2.15), (2.16), (2.18), (2.20) together,

−(x− 1)ΨK(x) = (1− x)
[

2 +
1 + x
1− x

log x +
1
2
(log x)2

]

+ (x− 1)
[

r(x) + ∑
1

(1− ρ)2

]
+ (x− 1)

[
`(x) + Γ̃′K(1)

]
⇒ ΨK(x) = 2 +

1 + x
1− x

log x +
1
2
(log x)2 − r(x)− ∑

1
(1− ρ)2 − `(x)− Γ̃′K(1)

= γK,1 + 1 +
1 + x
1− x

log x +
1
2
(log x)2 − r(x) − `(x)

Note the last equality follows from equation (2.11).

γK,1 = ΨK(x)− 1− 1 + x
1− x

log x− 1
2
(log x)2 + r(x) + `(x) (2.22)

We are now ready to deduce some bounds.

2.4 bounds for γK ,1 under grh

Estimates for ΨK(x)

Recall,

ΨK(x) =
1

x− 1 ∑
k, N(P)k≤ x

(
x

N(P)k − 1
)

k(log N(P))2

=
1

x− 1 ∑
k, N(P)k≤ x

(
x

N(P)k − 1
)
(log N(P))(log N(P)k)

≤ (log x)ΦK(x) (2.23)

Where ΦK(x) =
1

x− 1 ∑
k, N(P)k≤ x

(
x

N(P)k − 1
)
(log N(P)).

This is the counterpart of our ΨK(x) used by Ihara in [Iha06] to compute
γK,0. Also note that ΨK(x) ≥ 0. As noted in the previous section, e.g. see
(2.6) Ihara showed the upper bound
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ΦK(x) ≤ log x−
√

x− 1√
x + 1

(γK,0 + 1) +
2√

x + 1
(αK + βk) +

nK(log x + 1)
x− 1

⇒ ΨK(x) ≤ (log x)2 −
(√

x− 1√
x + 1

)
(log x)(γK,0 + 1) +

2 log x√
x

(αK + βK)

+
nK(log x)(log x + 1)

x− 1
(2.24)

Also, note that

βK = −{ r1

2
(γ + log 4π) + r2(γ + log 2π)} ≤ − (γ + log 2π)

2
nK < − nK

The last inequality follows from γ + log 2π = 2.4150927 . . . and therefore,

2βK log x√
x

+
nK(log x)(log x + 1)

x− 1

< nK(log x)
(

log x + 1
x− 1

− 2√
x

)
< 0 for all x ≥ 3.

Hence we have, for all x ≥ 3,

ΨK(x) ≤ (log x)2 −
(√

x− 1√
x + 1

)
(log x)(γK,0 + 1) +

2αK log x√
x

(2.25)

Estimates for r(x) under GRH

Recall we wrote,

r(x) = ∑
ρ(ρ− 1) log x− ρ2 + (1− ρ)2

ρ2(1− ρ)2 · xρ

x− 1

=
log x
x− 1 ∑

xρ

ρ(ρ− 1)
+

1
x− 1 ∑

(
xρ

ρ2 −
xρ

(1− ρ)2

)
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=
log x

2(x− 1) ∑
(

xρ

ρ(ρ− 1)
+

x1−ρ

(1− ρ)(−ρ)

)
+

1
x− 1 ∑

x1−ρ − xρ

(1− ρ)2

= − log x
2(x− 1) ∑

xρ + x1−ρ

ρ(1− ρ)
+

1
x− 1 ∑

x1−ρ − xρ

(1− ρ)2

= − log x
2(x− 1) ∑

2
√

x cos(γ log x)
ρ(1− ρ)

+
1

x− 1 ∑
−2i
√

x sin(γ log x)
(1− ρ)2

where the last equality follows under GRH, from writing ρ = 1
2 + iγ and

xρ + x1−ρ = xρ + xρ̄ =
√

xeiγ log x +
√

xe−iγ log x = 2
√

x cos(γ log x)

etc. We also note that |(1− ρ)2| = 1
4 + γ2 = |ρ(ρ− 1)| = ρ(1− ρ). Thus,

|r(x)| ≤
√

x log x
x− 1 ∑

1
|ρ(ρ− 1)| +

2
√

x
x− 1 ∑

1
|(1− ρ)2|

=

√
x(log x + 2)

x− 1 ∑
1

ρ(1− ρ)

=
2
√

x(log x + 2)
x− 1

(γK,0 + αK + βK + 1) (using equation 2.4)

(2.26)

Estimates for `(x)

Recall,

`(x) =− r1 + r2

x− 1

[
log x +

1
2
(log x)2

]
+

r1

x− 1

[
∞

∑
n=1

1
(1 + 2n)2 −

∞

∑
n=1

1
4n2

]
− r2

x− 1

+ r1

[
∞

∑
n=1

2n(2n + 1) log x− 4n2 + (1 + 2n)2

4n2(1 + 2n)2 · x−2n

x− 1

]

+ r2

[
∞

∑
n=1

n(n + 1) log x− n2 + (1 + n)2

n2(1 + n)2 · x−n

x− 1

]
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Therefore, we have, for x ≥ 3,

|`(x)| ≤ nK(log x)2

x− 1
+

nK(log x)
x(x− 1)

+
2nK

x− 1

(2.27)

Note that, ∑∞
n=1

1
n(n+1) = 1, whereas ∑∞

n=1
1
n2 = π2

6 ∼ 1.65.

Remark 2.4.1. Note that the above bound for `(x) is unconditional.

We now have all the estimates to prove our theorem.

Theorem 2.4.2. Under GRH, for |dK| > 8

|γK,1| ≤ 2(log αK)(2 log αK − γK,0) + 18 log αK + O
(
(log αK)

2

αK

)
(2.28)

where, as before, αK = log
√
|dK|.

Proof. Recall in (2.22) we had the formula

γK,1 = ΨK(x)− 1− 1 + x
1− x

log x− 1
2

log2 x + r(x) + `(x)

Thus,

|γK,1| ≤ |ΨK(x)|+ (log x)2 + |r(x)|+ |`(x)|

Note that ΨK(x) ≥ 0 and so |ΨK(x)| = ΨK(x). Substituting the bounds
obtained for r(x) in (2.26), ΨK(x) in (2.25) in the above equation we get :

|γK,1| ≤ (log x)2 −
(√

x− 1√
x + 1

)
(log x)(γK,0 + 1) +

2αK log x√
x

+

2
√

x(log x + 2)
x− 1

(γK,0 + αK + βK + 1) + |`(x)|

Let us first focus on the coefficient αK. We have

2αK

(
(log x)√

x
+

√
x(log x + 2)

x− 1

)
≤ 10αK(log x)√

x

For the coefficient of (γK,0 + 1) we have,
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2
√

x(log x + 2)
x− 1

−
(√

x− 1√
x + 1

)
(log x)

=
2
√

x log x + 4
√

x− (x + 1− 2
√

x) log x
x− 1

= − log x +
4
√

x log x + 4
√

x− 2
x− 1

Now recall that βK < − nK, putting this together with the bounds of `(x)
from (2.27) we have

2βK
√

x(log x + 2)
x− 1

+
nK(log x)2

x− 1
+

nK(log x)
x(x− 1)

+
2nK

x− 1

<
nK(log x)

x− 1

[
log x +

1
x
− 2
√

x
]
+

2nK

x− 1
[
1− 2

√
x
]

< 0

Thus the cumulative contribution from terms involving βK in |r(x)| and
|`(x)| is negative. So we’ll ignore these.
Therefore we have,

|γK,1| ≤ (log x)2 − (log x)(γK,0 + 1) +
10αK(log x)√

x

+

(
4
√

x log x + 4
√

x− 2
x− 1

)
(γK,0 + 1)

≤ (log x)
(

log x− (γK,0 + 1) +
10αK√

x

)

+

(
4
√

x log x + 4
√

x− 2
x− 1

)
(γK,0 + 1)

Therefore, choosing x = α2
K we get,

|γK,1| ≤ 2(log αK)(2 log αk − γK,0 + 9) + c2

(
(log αK)

2

αK

)
and hence we have our result. Note that, in the error term, the inequality
follows from Ihara’s upper bound on γK,0.
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Corollary 2.4.3. When γK,0 ≥ 0, we get, (under GRH and for |dK| > 8 )

γK,1 �
(

log log
√
|dK|

)2

2.5 an unconditional arithmetic formula for γK ,1

Theorem 2.5.1. (Unconditionally)

γK,1 = lim
x→∞

[
ΨK(x)− 1− 1 + x

1− x
log x− 1

2
(log x)2

]
Proof. Note that, we have the formula (as in equation 2.22 )

γK,1 = ΨK(x)− 1− 1 + x
1− x

log x− 1
2

log2 x + r(x) + `(x)

Since the estimates for `(x) in (2.27) are unconditional, we see that
limx→∞ `(x) = 0.

To show, same is true for r(x) we make use of standard zero-free region
of the Dedekind zeta function. In particular, we will use the following
Lemma 8.1 of [LO77] which states that :

Theorem 2.5.2. There is an absolute, effectively computable positive constant
c such that ζK(s) has no zeros ρ = β + iγ in the region :

|γ| ≥ 1
1 + 4 log dK

, β ≥ 1− c
log dK + nK log(|γ|+ 2)

We have (writing ρ = β + iγ)

r(x) = ∑
ρ(ρ− 1) log x− ρ2 + (1− ρ)2

ρ2(1− ρ)2 · xρ

x− 1

�∑
(log x) xβ−1

γ2
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Since β < 1, we can assume the condition on β in the above theorem holds,
by excluding finitely many zeros. Thus we get :

∑
(log x) xβ−1

γ2 < ∑
(log x) x−c(log dK+nK log(|γ|+2))−1

γ2

= ∑
log dK+nK log(|γ|+2) < T

+ ∑
log dK+nK log(|γ|+2) ≥ T

(2.29)

where we will choose T =
√

log x . Thus for the first sum :

∑
log dK+nK log(|γ|+2) < T

(log x) x−c(log dK+nK log(|γ|+2))−1

γ2

< ∑
(log x)x−cT−1

γ2 =

(
∑

1
γ2

)
(log x) exp(−c

√
log x)

Note that the last equality follows from :

exp(−c
√

log x) = exp(−c log x(
√

log x)−1) = exp(log x−cT−1
) = x−cT−1

Now as x → ∞, clearly exp(−c
√

log x)→ 0. We also have

lim
x→∞

log x

ec
√

log x
= lim

y→∞

y2

ecy → 0

Now let us consider the second sum in 2.29. Note that

log dK +nK log(|γ|+ 2) ≥
√

log x ⇒ |γ| ≥ −2+ exp

(√
log x− log dK

nK

)

We will write the expression on the right as u, i.e. |γ| ≥ u. Note that as
x → ∞, so does u.

We will also use the following result on counting the number of zeros in a
rectangle in the critical strip (it can be deduced from Jensen’s theorem),
see for example Theorem 5.31 of [IK21]

If NK(T) denote the number of zeros of ζK(s) in the region 0 ≤ R(s) ≤ 1
and |I(s)| ≤ T, then we have

|NK(T + 1)− NK(T)| � nK log T + log dK (2.30)
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where the implied constant is absolute.

Since x > 1 we have

∑
|γ|≥u

(log x) x−c(log dK+nK log(|γ|+2))−1

γ2

< (log x)

(
∑
|γ|≥u

1
γ2

)

≤ (log x)

∑
j>u

∑
j<|γ|<j+1

1
j2


≤ (log x) ∑

j>u

c1(nK log j + log dK)

j2

≤ c1nK(log x)
log u + 1

u
+ c1(log x)(log dK)

1
u

→ 0 as x → ∞ ( and therefore u→ ∞ ).

The above is true since,

u = −2 + exp

(√
log x− log dK

nK

)

log(u + 2) =

√
log x− log dK

nK

log x = (nK log(u + 2) + log dK)
2

Therefore we have, limx→∞ r(x) = 0 and this completes the proof.

In the next section we will show that our computations and techniques
generalize, and prove similar results for the m-th Euler-Kronecker con-
stants γK,m.
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2.6 generalizations to higher constants γK ,m

Recall, that we wrote the Laurent series of ζ ′K(s)
ζK(s)

about s = 1, to be :

ζ ′K(s)
ζK(s)

=
−1

s− 1
+

∞

∑
m=0

γK,m (s− 1)m

⇒ ζ ′K(s)
ζK(s)

+
1

s− 1
=

∞

∑
m=0

γK,m (s− 1)m

Differentiating both sides m times and letting s→ 1 we get,

lim
s→1

dm

dsm

[
ζ ′K(s)
ζK(s)

+
1

(s− 1)

]
= m! · γK,m (2.31)

On the other hand, from the Hadamard factorization, we had

− ζ ′K(s)
ζK(s)

=
1
s
+

1
s− 1

−∑
1

s− ρ
+ αK + βK + Γ̃K(s)

⇒ ζ ′K(s)
ζK(s)

+
1

s− 1
= −1

s
+ ∑

1
s− ρ

− αK − βK − Γ̃K(s)

So, differentiating both sides of the above m times we have,

dm

dsm

[
ζ ′K(s)
ζK(s)

+
1

(s− 1)

]
= − (−1)mm!

sm+1 + ∑
(−1)mm!
(s− ρ)m+1 − Γ̃(m)

K (s)

(2.32)
Letting s→ 1 in the above and using equation (2.31), we derive the formula

m! · γK,m = −(−1)mm! + ∑
(−1)mm!
(1− ρ)m+1 − Γ̃(m)

K (1)

⇒ γK,m + (−1)m = ∑
(−1)m

(1− ρ)m+1 −
1

m!
Γ̃(m)

K (1) (2.33)

Rewriting equation (2.32) to match our m = 1 setting :

dm

dsm
ζ ′K(s)
ζK(s)

= − (−1)mm!
(s− 1)m+1 −

(−1)mm!
sm+1 + ∑

(−1)mm!
(s− ρ)m+1 − Γ̃(m)

K (s)

(2.34)
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Recall, we were writing,

ZK(s) = −
ζ ′K(s)
ζK(s)

So that, equation (2.34) above, takes the shape : (note the change of signs)

Z(m)
K (s) =

(−1)mm!
(s− 1)m+1 +

(−1)mm!
sm+1 + ∑

(−1)m+1m!
(s− ρ)m+1 + Γ̃(m)

K (s) (2.35)

On the other hand, from the Euler product, we had :

ZK(s) = −
ζ ′K(s)
ζK(s)

= ∑
P,k≥1

log N(P)
N(P)ks

Differentiating m times yields

Z(m)
K (s) = ∑

P, k≥1

(−1)mkm(log N(P))m+1

N(P)ks (2.36)

To deduce bounds and an exact formula, we follow the same steps as
the m = 1 case, and evaluate the integral

Ψ(µ)
K (m, x) =

1
2πi

∫ c+i∞

c−i∞

xs−µ

s− µ
Z(m)

K (s) ds for c� 1

We will compute the expression xΨ(1)
K (m, x)−Ψ(0)

K (m, x), i.e. for µ = 0
and 1, in two different ways using equation (2.35) and (2.36). As a result, on
one side, the constituents of γK,m as in equation (2.33), will occur. Whereas,
on the other side we will have an expression of x and choosing appropiate
x will lead us to bounds on these higher coefficients.

The following classical formula will come in handy.

1
2πi

∫ c+i∞

c−i∞

ys

s
ds =


0 0 < y < 1
1
2 y = 1

1 y > 1

(2.37)

First using equation (2.36), we get
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xΨ(1)
K (m, x)−Ψ(0)

K (m, x)

= x · ∑
P, k≥1

(−1)mkm(log N(P))m+1

N(P)k

[
1

2πi

∫ c+∞

c−i∞

1
s− 1

(
x

N(P)k

)s−1

ds

]

− ∑
P,k≥1

(−1)mkm(log N(P))m+1
[

1
2πi

∫ c+∞

c−i∞

1
s

(
x

N(P)k

)s

ds
]

= x

 ∑
k, N(P)k<x

(−1)mkm(log N(P))m+1

N(P)k + ∑
k, N(P)k=x

(−1)mkm(log N(P))m+1

N(P)k · 1
2



−

 ∑
k,N(P)k<x

(−1)mkm(log N(P))m+1 + ∑
k,N(P)k=x

(−1)mkm(log N(P))m+1 · 1
2


= ∑

k, N(P)k< x

(
x

N(P)k − 1
)
(−1)mkm(log N(P))m+1

Note that the second sums in the square brackets, cancel each other as
N(P)k = x and there is an x at the very beginning of that line. We define :

ΨK(m, x) =
1

x− 1 ∑
k, N(P)k≤ x

(
x

N(P)k − 1
)

km(log N(P))m+1 for x > 1

(2.38)
Therefore, on one side we have,

xΨ(1)
K (m, x)−Ψ(0)

K (m, x) = (−1)m(x− 1)ΨK(m, x) (2.39)

We now focus on equation (2.35) and first look at the contribution from
the term : (−1)mm!

[
1

sm+1 +
1

(s−1)m+1

]
. To evaluate this, we will use a gen-

eralization of the classical formula stated in equation (2.37).

For n ≥ 1

1
2πi

∫ c+i∞

c−i∞

ys

sn+1 ds =

0 0 < y ≤ 1
1
n! (log y)n y > 1

(2.40)
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Let us write,

f (m, x) =
(−1)mm!

2πi

∫
(c)

xs
[

1
s− 1

(
1

sm+1 +
1

(s− 1)m+1

)
− 1

s

(
1

sm+1 +
1

(s− 1)m+1

)]
ds

This will be the net contribution coming from the first two terms of (2.35).
We will simplify this a little bit and write a recursive relation satisfied by
f (m, x), which will in turn help us to estimate it.

f (m, x)

=
(−1)mm!

2πi

∫
(c)

xs
[

1
sm+1(s− 1)

+
1

(s− 1)m+2 −
1

sm+2 −
1

s(s− 1)m+1

]
ds

= (−1)mm!
[

x
(log x)m+1

(m + 1)!
− (log x)m+1

(m + 1)!

]
+

(−1)mm!
2πi

∫
(c)

xs
[

1
sm+1(s− 1)

− 1
s(s− 1)m+1

]
ds

=
(−1)m

m + 1
(x− 1)(log x)m+1 +

(−1)mm!
2πi

∫
(c)

xs
[

1
sm(s− 1)

− 1
sm+1 +

1
s(s− 1)m −

1
(s− 1)m+1

]
ds

=
(−1)m

m + 1
(x− 1)(log x)m+1 + (−1)m+1(x + 1)(log x)m +

(−1)mm!
2πi

∫
(c)

xs
[

1
sm(s− 1)

+
1

s(s− 1)m

]
ds

=
(−1)m

m + 1
(x− 1)(log x)m+1 + (−1)m+1(x + 1)(log x)m +

(−1)m(m)!
2πi

∫
(c)

xs
[

1
sm−1(s− 1)

− 1
sm −

1
s(s− 1)m−1 +

1
(s− 1)m

]
ds

=
(−1)m

m + 1
(x− 1)(log x)m+1 + (−1)m+1(x + 1)(log x)m + m(m− 1) f (m− 2, x)

(2.41)
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Note that from our previous computations, e.g. see equation (2.16) we get
the m = 1 case and from [Iha06], 1.3.15 for the m = 0 case :

f (1, x) = (1− x)
[

2 +
1 + x
1− x

log x +
1
2
(log x)2

]
f (0, x) = (x− 1) log(x)

Now let us compute the contribution from the sum of non-trivial zeros.
We are trying to evaluate :

(−1)m+1m!
2πi

∫ c+∞

c−i∞
∑ xs

[
1

(s− 1)(s− ρ)m+1 −
1

s(s− ρ)m+1

]
ds (2.42)

Similar to the m = 1 case we do this by contour manipulation. We can
take a rectangular contour as in Figure 2.1, and show that as T → ∞ the
value of the integral goes to zero on each side of the rectangle, except
c− iT → c + iT. Thus, by residue theorem, the line integral on (c) will be
equal to the sum of residues.

For the second term in the square brackets above, in (2.42) :

the pole at s = 0 has residue : (−1)m+2m! · 1
(−ρ)m+1 = − m!

ρm+1 .

The pole at ρ ( order = m + 1) has residue :

(−1)m+2m! lim
s→ρ

dm

dsm

(
xs

s

)
= (−1)m+2m! lim

s→ρ

m

∑
k=0

(
m
k

)
d(m−k)

ds(m−k)
xs · dk

dsk
1
s

= (−1)m+2m! lim
s→ρ

m

∑
k=0

(
m
k

)
xs(log x)m−k (−1)kk!

sk+1

= (−1)m+2m!
m

∑
k=0

(
m
k

)
xρ(log x)m−k (−1)kk!

ρk+1
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Computations for the first term are very similar.
Residue at s = 1 will be (−1)m+1m!x ∑ 1

(1−ρ)m+1 .
The pole at ρ ( order = m + 1) has residue :

(−1)m+1m! lim
s→ρ

dm

dsm

(
xs

s− 1

)
= (−1)m+1m! lim

s→ρ

m

∑
k=0

(
m
k

)
d(m−k)

ds(m−k)
xs · dk

dsk
1

s− 1

= (−1)m+1m!
m

∑
k=0

(
m
k

)
xρ(log x)m−k (−1)kk!

(ρ− 1)k+1

Note that for m = 1 case, the residues from s = 0 and s = 1 came together
to form a constituent of γK,1, whereas the rest of the terms involving x,
we wrote it as r(x) and estimated it. We will do the same here, but we
need to be a bit more careful. Since the power of (−1)m gets canceled in
computing the pole at 0. We write the net contribution as follows :

m!(−1)m+1(x− 1)
[
∑

1
(1− ρ)m+1 + r(m, x)

]
(2.43)

where

r(m, x) =
1

x− 1

[
((−1)m+1 − 1)∑

1
ρm+1

]
+

∑
ρ

(
m

∑
k=0

(−1)kk!
(

m
k

) [
1

(ρ− 1)k+1 −
1

ρk+1

]
xρ(log x)m−k

x− 1

)

Now let us compute the contribution from the Gamma factors. Recall,

Γ̃K(s) =
r1

2

[
ψ
( s

2

)
− ψ

(
1
2

)]
+ r2 [ψ(s)− ψ(1)]

where ψ(s) = Γ′
Γ (s) is the digamma function. Thus, taking the m-th deriva-

tive we get,
Γ̃(m)

K (s) =
r1

2m+1 ψ(m)
( s

2

)
+ r2 ψ(m)(s)
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We look at the series expansion of Γ′
Γ (s) and its m-th derivative.

Γ′

Γ
(s) = ψ(s) = −γ−

∞

∑
k=0

(
1

s + k
− 1

1 + k

)
⇒ ψ(m)(s) = −

∞

∑
k=0

(−1)mm!
(s + k)m+1

Note that the above series expansion of digamma is valid in the entire com-
plex plane except for non-positive integers. i.e. in C \ {0,−1,−2,−3, · · · }.

Therefore we have the following expression for Γ̃(m)
K (s) :

Γ̃(m)
K (s) = − r1

2m+1

∞

∑
k=0

(−1)mm! 2m+1

(s + 2k)m+1 − r2

∞

∑
k=0

(−1)mm!
(s + k)m+1

= (−1)m+1m!

[
(r1 + r2)

sm+1 + r1

∞

∑
k=1

1
(s + 2k)m+1 + r2

∞

∑
k=1

1
(s + k)m+1

]
(2.44)

In the last line, we have separated the k = 0 case, and the sums now
start from k = 1. The summand k = 0 will give us the main term in the
contribution from these Gamma factors.

Remember, we are trying to evaluate the integral

x
2πi

∫ c+i∞

c−i∞

xs−1

s− 1
Γ̃(m)

K (s) ds − 1
2πi

∫ c+i∞

c−i∞

xs

s
Γ̃(m)

K (s) ds

We first compute the contribution from (r1+r2)
sm+1 term. We have the partial

fraction decomposition :

1
sm+1(s− 1)

=
1

s− 1
− 1

s
− 1

s2 − · · · −
1

sn+1

So contribution from the first part looks like :

(−1)m+1m!(r1 + r2)

[
x− 1−

m+1

∑
k=1

1
(k)!

(log x)k

]
(2.45)
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We have used the classical formula (2.40) multiple times to get the above.
Now to compute the contribution from the series terms in (2.44), we first
notice the similarity of it to the sum on non-trivial zeros ∑ (−1)mm!

(s−ρ)m+1 . So, the
residue computations will be very similar, only ρ replaced by −2k or −k.
For the first series, we are looking at the integral :

(−1)m+1m! r1

[
1

2πi

∫ c+i∞

c−i∞
xs

(
∞

∑
k=1

1
(s− 1)(s + 2k)m+1 −

1
s(s + 2k)m+1

)
ds

]

In the second term,

the pole at s = 0 has residue :
(−1)m+2m!r1

(2k)m+1 .

The pole at s = −2k ( order = m + 1) has residue :

(−1)m+2m!r1 lim
s→(−2k)

dm

dsm

(
xs

s

)
= (−1)m+2m!r1 lim

s→(−2k)

m

∑
j=0

(
m
j

)
d(m−j)

ds(m−j)
xs · dj

dsj
1
s

= (−1)m+2m!r1

m

∑
j=0

(
m
j

)
x−2k(log x)m−j (−1)j j!

(−2k)j+1

Computations for the first term are very similar.

Residue at s = 1 will be
(−1)m+1m!r1

(1 + 2k)m+1 x.

The pole at s = −2k ( order = m + 1) has residue :

(−1)m+1m!r1 lim
s→(−2k)

dm

dsm

(
xs

s− 1

)
= (−1)m+1m!r1 lim

s→(−2k)

m

∑
j=0

(
m
j

)
d(m−j)

ds(m−j)
xs · dj

dsj
1

s− 1

= (−1)m+1m!r1

m

∑
j=0

(
m
j

)
x−2k(log x)m−j (−1)j j!

(−2k− 1)j+1
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Thus the net contribution from the first series of equation (2.44)

(−1)m+1m! r1

[
x

∞

∑
k=1

1
(1 + 2k)m+1 −

∞

∑
k=1

1
(2k)m+1

]
+

(−1)m+1m! r1

∞

∑
k=1

[
m

∑
j=0

(
m
j

)
x−2k(log x)m−j j!

(
1

(2k)j+1 −
1

(2k + 1)j+1

)]
(2.46)

Looking at this, we can precisely write down the contribution from the
second series of (2.44), by just replacing 2k by k and r1 by r2. We get,

(−1)m+1m! r2

[
x

∞

∑
k=1

1
(1 + k)m+1 −

∞

∑
k=1

1
(k)m+1

]
+

(−1)m+1m! r2

∞

∑
k=1

[
m

∑
j=0

(
m
j

)
x−k(log x)m−j j!

(
1

(k)j+1 −
1

(k + 1)j+1

)]

= (−1)m+1m! r2(x− 1)
∞

∑
k=1

1
(1 + k)m+1 + (−1)mm! r2 +

(−1)m+1m! r2

∞

∑
k=1

[
m

∑
j=0

(
m
j

)
x−k(log x)m−j j!

(
1

(k)j+1 −
1

(k + 1)j+1

)]
(2.47)

We will summarize these computations in equations (2.45), (2.46) and (2.47)
to write the net contribution in the following form :

(x− 1)
[

Γ̃(m)
K (1) + (−1)m+1m! `(m, x)

]
(2.48)
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where

`(m, x) =
r1 + r2

(x− 1)

m+1

∑
t=1

(log x)t

t!
+

r1

(x− 1)

∞

∑
k=1

[
1

(1 + 2k)m+1 −
1

(2k)m+1

]

− r2

(x− 1)
+

r1

(x− 1)

∞

∑
k=1

[
m

∑
j=0

(
m
j

)
x−2k(log x)m−j j!

(
1

(2k)j+1 −
1

(2k + 1)j+1

)]

+
r2

(x− 1)

∞

∑
k=1

[
m

∑
j=0

(
m
j

)
x−k(log x)m−j j!

(
1

(k)j+1 −
1

(k + 1)j+1

)]
(2.49)

2.7 bounds for γK ,m under grh

Let us first estimate `(m, x) as the expression is right above.

Lemma 2.7.1. For m ≥ 1, we have

|`(m, x)| ≤ nK

x− 1

(
e (log x)m+1 + 1 +

(m + 1)!(log x)m

x

)
where nK denotes the degree [K : Q]. Also, nK = r1 + 2r2.

Proof. Note that after taking absolute value and applying some triangle
inequalities in (2.49), the first sum is ≤ enK (log x)m+1

x−1 . The next two terms
combined is ≤ nK

x−1 .

Now let us have a closer look at the series terms.
As both x, k > 1, we have x−k ≤ x−1. We’ll also write, (m

j )j! ≤ m!.
Thus we have,

m

∑
j=0

(
m
j

)
x−k(log x)m−j j!

(
1

(k)j+1 −
1

(k + 1)j+1

)

≤ m!(log x)m

x

m

∑
j=0

(
1

(k)j+1 −
1

(k + 1)j+1

)

≤ (m + 1)!(log x)m

x
1

k(k + 1)

Therefore we have the result!
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Remark 2.7.2. Note that we didn’t need GRH for the above estimate.
Lemma 2.7.1 is unconditional.

Let us now estimate, ΨK(m, x). First note that it is always non-negative.

Lemma 2.7.3. For all x ≥ 3, we have

ΨK(m, x) ≤ (log x)m
(

log x −
√

x− 1√
x + 1

(γK,0 + 1) +
2αK√

x

)
(2.50)

Proof.

ΨK(m, x) =
1

x− 1 ∑
k, N(P)k≤ x

(
x

N(P)k − 1
)

km(log N(P))m+1

=
1

x− 1 ∑
k, N(P)k≤ x

(
x

N(P)k − 1
)

k(log N(P))2(log N(P)k)m−1

≤ (log x)m−1ΨK(x) [ where ΨK(x) = ΨK(1, x) as in (2.14) ]

≤ (log x)m
(

log x −
√

x− 1√
x + 1

(γK,0 + 1) +
2αK√

x

)
where the last inequality is for all x ≥ 3 and follows from (2.25).

Lemma 2.7.4. For m ≥ 1, under GRH

|r(m, x)| ≤ (m!2m+1√x(log x)m + 4)
x− 1

(γK,0 + αK + βK + 1)

Proof. Recall,

r(m, x) =
1

x− 1

[
((−1)m+1 − 1)∑

1
ρm+1

]
+

∑
ρ

(
m

∑
k=0

(−1)kk!
(

m
k

) [
1

(ρ− 1)k+1 −
1

ρk+1

]
xρ(log x)m−k

x− 1

)
(2.51)
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Note that, for m odd, the first sum of r(m, x) above, is zero. This is why,
such a term didn’t not appear in our computations for γK,1.
For m ≥ 2, m even,∣∣∣∣ 2

x− 1 ∑
1

ρm+1

∣∣∣∣ ≤ 2
x− 1 ∑

1
|ρ|m+1 ≤

2
x− 1 ∑

1
|ρ|2

As in the m = 1 case, under GRH we can write ρ = 1
2 + iγ and therefore,

|ρ|2 = 1
4 + γ2 = ρ(1− ρ) and so,

∑
1
|ρ|2 = ∑

1
ρ(1− ρ)

= 2(γK,0 + αK + βK + 1)

e.g. see equation (2.4).

Now for the second sum,

∑
ρ

∣∣∣∣∣ m

∑
k=0

(−1)kk!
(

m
k

) [
1

(ρ− 1)k+1 −
1

ρk+1

]
xρ(log x)m−k

x− 1

∣∣∣∣∣
≤ m!

√
x(log x)m2m

x− 1 ∑
ρ

1
|ρ(1− ρ)|

≤ (m!2m+1)

√
x(log x)m

x− 1
(γK,0 + αK + βK + 1)

The last two inequalities are under GRH and follows from the same
reasoning given right above.

Note that, we have kept the βK here on purpose. It is negative (in fact, as
we showed before, βK < −nK ) and it will help us ignore most, if not all,
of the contribution coming from the gamma factors, as we shall see shortly.

We are now ready to state and prove our results on bounds for the
general n-th Euler-Kronecker constants :

Theorem 2.7.5. Under GRH, for dK ≥ 8, and m ≥ 1

γK,m �
2m

m!
(log(2m(m!)2)+ log αK)

m (2 log(2m(m!)2) + 2 log αK − γK,0 + 1
)
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Proof. Putting our above computations together, the left hand side, from
equation (2.39) is : (−1)m(x− 1)ΨK(m, x). Whereas, the right hand side is
obtained from combining equations (2.41), (2.43) and (2.48). We have,

(−1)m(x− 1)ΨK(m, x) = f (m, x) + m!(−1)m+1(x− 1)
[
∑

1
(1− ρ)m+1 + r(m, x)

]
+ (x− 1)

[
Γ̃(m)

K (1) + (−1)m+1m! `(m, x)
]

⇒ (−1)mΨK(m, x) =
f (m, x)
(x− 1)

−
[
∑

(−1)mm!
(1− ρ)m+1 − Γ̃(m)

K (1)
]
+

m!(−1)m+1 [r(m, x) + `(m, x)]

Now from equation (2.33) we get :

⇒ (−1)mΨK(m, x) =
f (m, x)
(x− 1)

−m! [γK,m + (−1)m] +

m!(−1)m+1 [r(m, x) + `(m, x)]

m! [γK,m + (−1)m] = (−1)m+1ΨK(m, x)+
f (m, x)
(x− 1)

+ (−1)m+1m! [r(m, x) + `(m, x)]

(2.52)

Note that, as in the m = 1 case, it is easily checked that the cumulative
contribution from the βK term in Lemma 2.7.4 and |`(m, x)| is negative.
And by Ihara’s bound, γK,0 is dominated by αK. Therefore, we can write

r(m, x) + `(m, x)� m!2m+1(log x)mαK√
x

Note that the term involving αK in ΨK(m, x) as in Lemma 2.7.3 gets
absorbed in this as well. Also we see from (2.41) that | f (m,x)

x−1 | � (log x)m+1

Putting this together with Lemma 2.7.3 we get

m![γK,m + (−1)m]� (log x)m
(

log x− (γK,0 + 1) +
(m!)22m+1αK√

x

)



2.8 an unconditional arithmetic formula for γK ,m 43

Choosing x =
(
(m!)22mαK

)2 minimizes the second term in brackets and
gives us the bound :

γK,m �
2m

m!
(log(2m(m!)2) + log αK)

m (2 log(2m(m!)2) + 2 log αK − γK,0 + 1
)

Corollary 2.7.6. If γK,0 ≥ 0 together with the conditions of the theorem, we
get

γK,m �
2m

m!
(log(2m(m!)2) + log αK)

m+1

In particular, for m� log dK
log log dK

, we have

γK,m �
2m+1

m!
(log log dK)

m+1

2.8 an unconditional arithmetic formula for γK ,m

We can also prove the following general arithmetic formula like that in
Theorem 2.5.1, unconditionally.

Theorem 2.8.1.

γK,m + (−1)m = lim
x→∞

1
m!

[
(−1)m+1ΨK(m, x) +

f (m, x)
(x− 1)

]
(2.53)

where as before f (m, x) is recursively defined as :

f (m, x) =
(−1)m

m + 1
(x− 1)(log x)m+1 + (−1)m+1(x + 1)(log x)m + m(m− 1) f (m− 2, x)

f (1, x) = (1− x)
[

2 +
1 + x
1− x

log x +
1
2
(log x)2

]
f (0, x) = (x− 1) log(x)

and

ΨK(m, x) =
1

x− 1 ∑
k, N(P)k≤ x

(
x

N(P)k − 1
)

km(log N(P))m+1 for x > 1
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Proof. As we saw in proof of Theorem 2.7.5, equation (2.52) :

m! [γK,m + (−1)m] = (−1)m+1ΨK(m, x)+
f (m, x)
(x− 1)

+ (−1)m+1m! [r(m, x) + `(m, x)]

From Lemma (2.7.1) we get limx→∞ `(m, x) = 0. We will show the same
for r(m, x) as well, which will give us the result.

Recall, it was the r(m, x) term which we estimated using GRH. To prove
an unconditional result, we will reduce it to the case of the proof of
Theorem 2.5.1. Recall, we wrote

r(m, x) =
1

x− 1

[
((−1)m+1 − 1)∑

1
ρm+1

]
+

∑
ρ

(
m

∑
k=0

(−1)kk!
(

m
k

) [
1

(ρ− 1)k+1 −
1

ρk+1

]
xρ(log x)m−k

x− 1

)

For fixed m, note that the first term goes to 0 as x → ∞. Writing ρ = β+ iγ,
we get

r(m, x)� 2m ·m!(log x)m ∑
xβ−1

γ2

We note that in the computations for the proof of Theorem 2.5.1, if we
replace log x by (log x)m, it still works, giving us limx→∞ r(m, x) = 0.
Therefore, we have

γK,m + (−1)m = lim
x→∞

1
m!

[
(−1)m+1ΨK(m, x) +

f (m, x)
(x− 1)

]



3
B O U N D S F O R T H E F U N C T I O N F I E L D
C A S E

3.1 preliminaries

In this chapter we deduce similar bounds as in Chapter 2 for the function
field case. Let q be a power of a prime and Fq be the finite field with
q elements. Let K be the function field of a curve X over Fq of genus g.
A good reference for the basic facts about the zeta function ζK(s) is [Ros00].

We set u = q−s, then the ζK(s) is a rational function of u of the form

ζK(s) =
∏

g
i=1 (1− πiu)(1− πiu)
(1− u)(1− qu)

with πiπi = q for all 1 ≤ i ≤ g

(3.1)
Note that each zero 1

πi
or 1

πi
of ζK(s) in u corresponds to infinitely many

zeros in s and all of them are translations of a zero by 2πin
log q , n ∈ Z. Similarly,

poles are translations of 0 and 1 by 2πin
log q , n ∈ Z.

Also, ζK(s) has a simple pole at s = 1, and thus like the number field case
we can write the Laurent series of it’s logarithmic derivative as

ζ ′K(s)
ζK(s)

=
−1

s− 1
+ γK,0 + γK,1(s− 1) + · · · (3.2)

and define γK,m as the general m-th Euler-Kronecker constants.

Ihara in [Iha06], 1.3.10 derives the following Stark like lemma.

Lemma 3.1.1.

− ζ ′K(s)
ζK(s)

=
1
s
+

1
s− 1

−∑
ρ

1
s− ρ

+ (g− 1) log q + ∑
θ 6= 0,1

1
s− θ

(3.3)

45
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where ρ runs over the non-trivial zeros of and θ runs over all poles 6= 0, 1
of ζK(s).

Proof. Write a simpler rational form ζK(s) = ∏α∈A(1− αq−s)λα , where
λα = ±1 and A is a finite subset of C×. Taking the logarithmic derivative
we get,

ζ ′K(s)
ζK(s)

= ∑
α∈A

λα
−αq−s log q

1− αq−s ⇒ − ζ ′K(s)
ζK(s)

= ∑
α∈A

λα
log q

1− α−1qs (3.4)

Now consider the partial fraction formula :

1
ez − 1

+
1
2

= lim
T→∞

T

∑
n= −T

1
z− 2πin

Substituting ez = α−1qs ⇒ z = s log q− log α we get,

1
α−1qs − 1

+
1
2
= lim

T→∞

T

∑
n= −T

1
s log q− log α− 2πin

log q
α−1qs − 1

+
log q

2
= lim

T→∞

T

∑
n= −T

1

s− log α+2πin
log q

= lim
T→∞

∑
qβ=α
|β|≤T

1
s− β

= ∑
qβ=α

1
s− β

(3.5)

Putting (3.5) in equation (3.4) we get,

− ζ ′K(s)
ζK(s)

= ∑
α∈A

λα

 log q
2
− ∑

qβ=α

1
s− β



=
log q

2 ∑
α∈A

λα +

1
s
+

1
s− 1

+ ∑
poles θ
θ 6=0,1

1
s− θ

 − ∑
zeros

1
s− ρ

=
1
s
+

1
s− 1

− ∑
1

s− ρ
+ (g− 1) log q + ∑

θ 6=0,1

1
s− θ

We have
γK,0 = lim

s→1

(
ζ ′K(s)
ζK(s)

+
1

s− 1

)
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and using Lemma 3.1.1, we get

γK,0 = ∑
1

1− ρ
− (g− 1) log q − ∑

θ 6=0,1

1
1− θ

− 1

In [Iha06], Ihara deduces the following upper bound for γK,0 :

Theorem 3.1.2. (Ihara) For g > 2 or, g = 2 and q > 2, and αK = (g− 1) log q
we have

γK,0 ≤
(

αK + 1
αK − 1

)
(2 log αK + 1 + log q)

3.2 bounds for γK ,1

Differentiating (3.3) we get,

Z′K(s) = −
1
s2 −

1
(s− 1)2 + ∑

1
(s− ρ)2 − ∑

θ 6=0,1

1
(s− θ)2 (3.6)

Taking limit s→ 1 we get,

γK,1 = 1− ∑
1

(1− ρ)2 + ∑
θ 6=0,1

1
(1− θ)2 (3.7)

We do the same process as in the number field case, namely, we consider
the integral

Ψ(µ)
K (x) =

1
2πi

∫ c+i∞

c−i∞

xs−µ

s− µ
Z′K(s) ds for c� 0

for µ = 0 and 1 and evaluate the expression xΨ(1)
K (x)− Ψ(0)

K (x) in two
different ways using equation (3.6) above and another expression coming
from the Euler product. Note that by c � 0, we just mean that we are
considering the integral on a line s = c, far to the right of 1.

Looking at the similarities of equation (3.3) to the number field case
of (2.3), we see that we only need to tweak our computations a little bit,
particularly, instead of the gamma factors, we need to do the computations
for the sum related to the poles, rest is similar. The contribution from the
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poles will be

(x− 1)

[
∑

θ 6=0,1

θ(θ − 1) log x− θ2 + (1− θ)2

θ2(1− θ)2 · xθ

x− 1
+ ∑

θ 6=0,1

1
(1− θ)2

]

= (x− 1)

[
`(x) + ∑

θ 6=0,1

1
(1− θ)2

]
(say)

Thus we will have the formula,

γK,1 = ΨK(x)− 1− 1 + x
1− x

log x− 1
2
(log x)2 + r(x) − `(x) (3.8)

where as before,

ΨK(x) =
1

x− 1 ∑
k, N(P)k< x

(
x

N(P)k − 1
)

k(log N(P))2 for x > 1

(3.9)
and

r(x) = ∑
zeros

ρ(ρ− 1) log x− ρ2 + (1− ρ)2

ρ2(1− ρ)2 · xρ

x− 1

and

`(x) = ∑
poles
θ 6=0,1

θ(θ − 1) log x− θ2 + (1− θ)2

θ2(1− θ)2 · xθ

x− 1

Upper bound for ΨK(x)

As in the number field case, we have

ΨK(x) =
1

x− 1 ∑
k, N(P)k≤ x

(
x

N(P)k − 1
)

k(log N(P))2

=
1

x− 1 ∑
k, N(P)k≤ x

(
x

N(P)k − 1
)
(log N(P))(log N(P)k)

≤ (log x)ΦK(x) (3.10)



3.2 bounds for γK ,1 49

Where ΦK(x) =
1

x− 1 ∑
k, N(P)k≤ x

(
x

N(P)k − 1
)
(log N(P)).

This is the counterpart of our ΨK(x) used by Ihara in [Iha06] to compute
γK,0. Also note that ΨK(x) ≥ 0. Ihara showed the following upper bound
(e.g. see Main Lemma (see 1.5.6) and Lemma 2 of [Iha06])

ΦK(x) ≤ log x−
√

x− 1√
x + 1

(γK,0 + cq) +
2αK√
x + 1

+ log q

⇒ ΨK(x) ≤ (log x)2 −
(√

x− 1√
x + 1

)
(log x)(γK,0 + cq) +

2αK log x√
x + 1

+ (log x)(log q)

⇒ ΨK(x)� (log x)
(

log x− γK,0 + log q +
αK√

x

)
(3.11)

Note that, here

cq =
q + 1

2(q− 1)
log q

Upper bound for `(x)

`(x) = ∑
θ 6=0,1

θ(θ − 1) log x− θ2 + (1− θ)2

θ2(1− θ)2 · xθ

x− 1

=
log x
x− 1 ∑

θ 6=0,1

xθ

θ(θ − 1)
+

1
x− 1 ∑

θ 6=0,1

[
xθ

θ2 −
xθ

(1− θ)2

]

� log x (Note that Re(θ) = 0 or 1, and the series are abs. convg. )
(3.12)
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Upper bound for r(x)

Since GRH holds in the Function field case, ρ = 1
2 + iγ, thus 1− ρ =

1
2 − iγ = ρ̄.
We will have, like in te number field case, (and [Iha06], 1.3.11)

r(x)� log x√
x
(γK,0 + αK +

q + 1
2(q− 1)

log q)� αK(log x)√
x

(3.13)

We now have all the estimates to prove our theorem :

Theorem 3.2.1. For g > 2 or, g = 2 and q > 2, we have

γK,1 � (log αK)(2 log αK − γK,0 + log q + 1) (3.14)

where αK = (g− 1) log q

Proof. Plugging in the bounds obtained for `(x) in (3.12), r(x) in (3.13),
ΨK(x) in (3.11) into the equation (3.8) we get :

γK,1 � (log x)
(

log x− γK,0 + log q +
αK√

x

)
Choosing x = α2

K we get,

γK,1 � (log αK)(2 log αK − γK,0 + log q + 1)

where the last inequality follows from the bound on γK,0 due to Ihara, as
in Theorem 3.1.2.

3.3 general case : bounds for γK ,n

Hence, differentiating (3.1.1) n times we get,

Z(n)
K (s) =

(−1)nn!
sn+1 +

(−1)nn!
(s− 1)n+1 +(−1)n+1 ∑

n!
(s− ρ)n+1 +(−1)n ∑

θ 6=0,1

n!
(s− θ)n+1

(3.15)
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and therefore, letting lim s→ 1

− n! γK,n = (−1)nn! + (−1)n+1 ∑
n!

(1− ρ)n+1 + (−1)n ∑
θ 6=0,1

n!
(1− θ)n+1

⇒ γK,n = (−1)n+1 + (−1)n ∑
1

(1− ρ)n+1 + (−1)n+1 ∑
θ 6=0,1

1
(1− θ)n+1

(3.16)

The computations are very similar. We have

ΨK(n, x) =
1

x− 1 ∑
k, N(P)k≤ x

(
x

N(P)k − 1
)

kn(log N(P))n+1 for x > 1

(3.17)
together with (for n ≥ 2 )

ΨK(n, x) ≤ (log x)n−1ΨK(x)� (log x)n
(

log x− γK,0 + log q +
αK√

x

)
(3.18)

The contribution from the term : (−1)nn!
sn+1 + (−1)nn!

(s−1)n+1 can be similarly com-
puted to be the function f (n, x) as defined in Theorem 2.8.1. Also, we
had f (n, x) � (log x)n+1. Similarly, since GRH is known in this case,
contribution from the non-trivial zeros is

n!(−1)n+1(x− 1)
(

∑
1

(1− ρ)n+1 + r(n, x)
)

where,

r(n, x)� (n!2n+1)
αK(log x)n
√

x

The only new thing we need to compute is the contribution of the poles.
Which again, looking at the similarity of the term to that of the zeros,
looks like :

n!(−1)n(x− 1)
(

∑
1

(1− θ)n+1 + `(n, x)
)
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where

`(n, x) =
1

x− 1 ∑
poles
θ 6=0,1

(
x(−1)n(n!)

n

∑
k=0

(
n
k

)
xθ−1(log x)n−k · (−1)kk!

(θ − 1)k+1

−(−1)n(n!)
n

∑
k=0

(
n
k

)
xθ(log x)n−k · (−1)kk!

θk+1

)

� n!x(log x)n

x− 1

n

∑
k=0

(
n
k

) ∣∣∣∣∣∣∣∣ ∑
poles
θ 6=0,1

1
(θ − 1)k+1 −

1
θk+1

∣∣∣∣∣∣∣∣
� n!2n(log x)n

Note that the first inequality follows from the fact that Re(θ) = 0 or 1
whereas, all the series in the second inequality is absolutely convergent.

We are now ready to generalize Theorem 3.2.1.

Theorem 3.3.1. For g > 2 or, g = 2 and q > 2, we have

γK,n + (−1)n � 2
n!
(log(n!2n+1αK))

n(2 log(αK)− γK,0 + log q + 1 + n!2n)

As before, here αK = (g− 1) log q.

Proof. Putting our computations together,

(x− 1)ΨK(n, x) = f (n, x) + n!(−1)n+1(x− 1)
(

∑
1

(1− ρ)n+1 + r(n, x)
)

+ n!(−1)n(x− 1)
(

∑
1

(1− θ)n+1 + `(n, x)
)

⇒ ΨK(n, x) =
f (n, x)
(x− 1)

−
[
(−1)n ∑

n!
(1− ρ)n+1 + (−1)n+1 ∑

θ 6=0,1

n!
(1− θ)n+1

]

+ r(n, x) + `(n, x)
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n!(γK,n + (−1)n) = −ΨK(n, x) +
f (n, x)
(x− 1)

+ r(n, x) + `(n, x)

� (log x)n
(

log x− γK,0 + log q +
n!2n+1αK√

x
+ n!2n

)

choosing x = (n!2n+1αK)
2 to minimize the sum, we get our result

γK,n + (−1)n � 2
n!
(log(n!2n+1αK))

n(2 log(αK)− γK,0 + log q + 1 + n!2n)



4
M O M E N T S O F H I G H E R D E R I VAT I V E S O F
L ( s , χ ) AT s = 1

4.1 preliminaries

Let K be a number field and χ be a primitive Dirichlet character on K
(i.e. a primitive Hecke character with finite order). Let L(s, χ) be the
L-function associated to it. In particular, when χ = χ0, the principal
character, L(s, χ) = ζK(s), the Dedekind zeta function of K. The completed
L-function is of the form :

ξ(s, χ) = AB
s
2 Γ
(

s + 1
2

)a

Γ
( s

2

)a′

Γ(s)r2 L(s, χ) (4.1)

and satisfies a functional equation : ξ(s, χ) = ε(χ)ξ(1− s, χ), where ε(χ)

is a constant of absolute value 1. A, B are constants involving 2, π, the
discriminant of K and the conductor fχ. As we’ll be concerned with higher
derivatives, we haven’t written them down explicitly, but interested reader
can have a look at p.211 of [CF76] or for Hecke’s original proof see [Hec83].

Also note that, here a (resp. a′) is the number of real places of K where
χ is ramified (resp. unramified), r1 = a + a′ is the number of real places of
K and r2 is the number of complex places in K.

For χ 6= χ0, taking the logarithmic derivative of (4.1) and using Hadamard
product one can then deduce a Stark like lemma (e.g. see Lemma 2.1 of
[Sta74] or p.83 of [Dav00]) :

L′(s, χ)

L(s, χ)
= C− a

2
Γ′

Γ

( s
2

)
− a′

2
Γ′

Γ

(
s + 1

2

)
− r2

Γ′

Γ
(s) + ∑

ρ

(
1

s− ρ
+

1
ρ

)
(4.2)

C being a constant involving log of terms in B in (4.1) etc.

54
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For the rest of the chapter, we will denote the LHS by L(s, χ), i.e.

L(s, χ) =
L′(s, χ)

L(s, χ)
(say)

On the other hand, by taking the logarithmic derivative of the Euler
product of L(s, χ) we get :

L(s, χ) = −∑
P,k

(
χ(P)

N(P)s

)k

log N(P) (4.3)

Ihara, Murty and Shimura proved the following theorem in [IMS09] :

Theorem 4.1.1. (Ihara, Murty, Shimura)
If χ 6= χ0, then

L(1, χ) = − lim
x→∞

ΦK,χ(x) (4.4)

where

ΦK,χ(x) =
1

x− 1 ∑
N(P)k≤x

(
x

N(P)k − 1
)

χ(P)k log N(P) ( for x > 1)

Here, k is a positive integer and the sum is taken over non-archimedean
primes. Under GRH, they have shown the following upper bound :

|L(1, χ)| < 2 log log
√

dχ + 1− γK,0 + O
(

log |dK|+ log log dχ

log dχ

)
Here, dχ = |dK|N(fχ) and γK,0 is the Euler-Kronecker constant of K.

The proof of the above theorem follows its counterpart for the Dedekind
zeta function, due to Ihara in [Iha06]. It is based on computing the integral

Φ(µ)(x) =
1

2πi

∫ c+i∞

c−i∞

xs−µ

s− µ
L(s, χ) ds for c� 0

for µ = 0 and 1, in two different ways using the equations (4.2) and (4.3)
and then estimating the terms.

Remark 4.1.2. Due to equation (4.2) and (4.3), using the same methods as
in the case of γK,n in Chapter 2, similar formulas and bounds for higher
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derivatives of L(s, χ) at s = 1 can be computed. We present some of those
computations in the next sections.

4.2 an “exact formula" for L ′ (1, χ)

Differentiating equation (4.2) we get,

L′(s, χ) = −∑
ρ

1
(s− ρ)2 + Γ̃′χ(s) (4.5)

Γ̃χ(s) = −
a
2

Γ′

Γ

(
s + 1

2

)
− a′

2
Γ′

Γ

( s
2

)
− r2

Γ′

Γ
(s)

=
n
2

γ +
a
2

∞

∑
k=0

(
2

s + 1 + 2k
− 2

2k + 2

)
+

a′

2

∞

∑
k=0

(
2

s + 2k
− 2

1 + 2k

)
+ r2

∞

∑
k=0

(
1

s + k
− 1

1 + k

)

Here γ = limn→∞
[
∑n

k=1
1
k − ln n

]
∼ 0.5772 . . . is the Euler–Mascheroni

constant and n = [K : Q]. Differentiating we get,

Γ̃′χ(s) = − a
∞

∑
k=0

1
(s + 1 + 2k)2 − a′

∞

∑
k=0

1
(s + 2k)2 − r2

∞

∑
k=0

1
(s + k)2

Differentiating the Euler product in equation (4.3) we get,

L′(s, χ) = ∑
P,k

k
(

χ(P)
N(P)s

)k

(log N(P))2 (4.6)

To find a similar ‘exact formula’ as in the case of γK,1, we evaluate the
integral :

Ψ(µ)
χ (x) =

1
2πi

∫ c+i∞

c−i∞

xs−µ

s− µ
L′(χ, s) ds for c� 0
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For µ = 0 and 1 in two different ways using equation (4.6) and equation
(4.2) and the classical formulas:

1
2πi

∫ c+i∞

c−i∞

ys

s
ds =


0 0 < y < 1
1
2 y = 1

1 y > 1

(4.7)

From the Euler product we get :

xΨ(1)
χ (x)−Ψ(0)

χ (x) = ∑
k, N(P)k< x

k
(

x
N(P)k − 1

)
χ(P)k(log N(P))2 (4.8)

Looking at the above computation, we define :

Ψχ(x) =
1

x− 1 ∑
k, N(P)k< x

k
(

x
N(P)k − 1

)
χ(P)k(log N(P))2 for x > 1

(4.9)

On the other hand, from equation (4.5) we get,

xΨ(1)
χ (x)−Ψ(0)

χ (x) =
x

2πi

∫ c+i∞

c−i∞

xs−1

s− 1

[
−∑

1
(s− ρ)2 + Γ̃′χ(s)

]
ds

− 1
2πi

∫ c+i∞

c−i∞

xs

s

[
−∑

1
(s− ρ)2 + Γ̃′χ(s)

]
ds

Computing similar contour integrals as γK,1 we see that, contribution from
the ∑ρ term is :

(1− x)
[
∑

ρ(ρ− 1) log x− ρ2 + (1− ρ)2

ρ2(1− ρ)2 · xρ

x− 1
+ ∑

1
(1− ρ)2

]

= (1− x)
[

rχ(x) + ∑
1

(1− ρ)2

]
(say)

(4.10)
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For contribution from the Γ̃′χ(s), we first re-write it as follows :

Γ̃′χ(s) = −
a′ + r2

s2 − a
∞

∑
k=0

1
(s + 1 + 2k)2 − a′

∞

∑
k=1

1
(s + 2k)2 − r2

∞

∑
k=1

1
(s + k)2

For the first term in the above equation, we have

− (a′ + r2)

[
x

2πi

∫ c+i∞

c−i∞

xs−1

s2(s− 1)
ds − 1

2πi

∫ c+i∞

c−i∞

xs

s3 ds
]

= −(a′ + r2)

[
x

2πi

∫ c+∞

c−i∞
xs−1

(
1

s− 1
− 1

s
− 1

s2

)
ds − 1

2
(log x)2

]
= −(a′ + r2)

[
x− 1− log x− 1

2
(log x)2

]
= (a′ + r2)(1− x)

[
1− log x

(x− 1)
− (log x)2

2(x− 1)

]

Note that, as before, here we’re using the classical formula : (for n ≥ 1)

1
2πi

∫ c+i∞

c−i∞

ys

sn+1 ds =

0 0 < y ≤ 1
1
n! (log y)n y > 1

For the rest of the terms involving series, the computations are similar to
that of 1

(s−ρ)2 and we get the total contribution of Γ̃′χ(s) terms to be :
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(a′ + r2)(1− x)
[

1− log x
(x− 1)

− (log x)2

2(x− 1)

]
+

a(1− x)

[
∞

∑
k=0

(2k + 1)(2k + 2) log x− (1 + 2k)2 + (2 + 2k)2

(2 + 2k)2(1 + 2k)2 · x−2k−1

x− 1
+

∞

∑
k=0

1
(2 + 2k)2

]
+

a′(1− x)

[
∞

∑
k=1

2k(2k + 1) log x− 4k2 + (1 + 2k)2

4k2(1 + 2k)2 · x−2k

x− 1
+

∞

∑
k=1

1
(1 + 2k)2

]
+

r2(1− x)

[
∞

∑
k=1

k(k + 1) log x− k2 + (1 + k)2

k2(1 + k)2 · x−k

x− 1
+

∞

∑
k=1

1
(1 + k)2

]

= (1− x)
[
`χ(x)− Γ̃′χ(1)

]
(say)

(4.11)

Putting together equation (4.8), (4.10) and (4.11) we get

(x− 1)Ψχ(x) = (1− x)
[

rχ(x) + ∑
1

(1− ρ)2

]
+ (1− x)

[
`χ(x)− Γ̃′χ(1)

]
−Ψχ(x) = `χ(x) + rχ(x)− Γ̃′χ(1) + ∑

1
(1− ρ)2

L′(1, χ) = Ψχ(x) + rχ(x) + `χ(x) (4.12)

Note that,

|Ψχ(x)| ≤ ΨK(x)

� (log x)
(

log x− γK,0 +
2αK√

x

)
where the last inequality is under GRH, follows from (2.25)

Lemma 4.2.1. For χ 6= χ0, we have (unconditionally)

`χ(x) = O
(

nK(log x)2

x

)
Here the implied constant is absolute.

Proof. Note that the series are absolutely convergent and thus, contribution
from the series terms are : O( (a+r2) log x

x2 + a′ log x
x3 ) = O( nK log x

x2 ). Whereas,

the first term is O( nK(log x)2

x ).
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We are now ready to state and prove our exact formula :

Theorem 4.2.2. For χ 6= χ0, we have, unconditionally,

L′(χ, 1) = lim
x→∞

Ψχ(x)

Proof. From the above lemma, limx→∞ `χ(x) = 0 . For the rχ term, note
that following the exact same steps as in the computation of limx→∞ r(x),
for γK,1 we can show that limx→∞ rχ(x) = 0.

We also note that, since rχ(x) has the same expression as that of r(x) in
the computaion of γK,1, we get, under GRH, ( writing ρ = 1

2 + iγ)

rχ(x) =
log x
x− 1 ∑

xρ

ρ(ρ− 1)
+

1
x− 1 ∑

−2i
√

x sin(γ log x)
(1− ρ)2 (4.13)

Thus, (for χ 6= χ0)

|r(x)| ≤
√

x log x
x− 1 ∑

1
|ρ(ρ− 1)| +

2
√

x
x− 1 ∑

1
|(1− ρ)2|

=

√
x(log x + 2)

x− 1 ∑
1

ρ(1− ρ)

=
2
√

x(log x + 2)
x− 1

(L(χ, 1) + αK,χ + βK,χ)

The last equality follows from, Theorem 2 of [IMS09]. Here,
αK,χ = 1

2 log dχ where dχ = |dK|N(fχ)

βK,χ = − a+r2
2 (γ + log 4π)− a′+r2

2 (γ + log π)

fχ being the conductor of χ and γ = γQ,0 being the Euler-Mascheroni
constant. Note that, from Theorem 3 of [IMS09] we have L(χ, 1)� αK,χ.
Thus we can write,

rχ(x)� log x√
x
(αK,χ) (4.14)
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4.3 generalization to higher derivatives

In this section we present a generalization of the limit formula as in
Theorem 4.2.2. For n ≥ 1, we look at the n-th derivative of the Euler
product in (4.3) :

L(n)(s, χ) = (−1)n+1 ∑
P,k

kn
(

χ(P)
N(P)s

)k

(log N(P))n+1 (4.15)

Similarly differentiating (4.2) n-times,

L(n)(s, χ) = (−1)nn! ∑
ρ

1
(s− ρ)n+1 + Γ̃(n)

χ (s) (4.16)

We similarly evaluate the integral :

Ψχ(µ, n, x) =
1

2πi

∫ c+i∞

c−i∞

xs−µ

s− µ
L(n)(χ, s) ds for c� 0

For µ = 0 and 1 in two different ways using equation (4.15) and (4.16).
Thus on one hand we have,

xΨχ(1, n, x)−Ψχ(0, n, x)

= (−1)n+1 ∑
k, N(P)k< x

kn
(

x
N(P)k − 1

)
χ(P)k(log N(P))n+1 (4.17)

On the other hand we can similarly compute the contribution from the ∑ρ

term and Γ-factor. For the non-trivial zeros we do similar contour compu-
tations. The pole at s = 0 (resp. s = 1) has residue − n!

ρn+1 (resp. (−1)nn!
(1−ρ)n+1 )

where as residue at s = ρ (pole of order n + 1) is (−1)n lims→ρ
dn

dsn

(
xs

s

)
(resp. s replaced by s− 1 while computing ΨK(1, n, x)) so that the total
contribution will be of the form (x − 1)[r(χ, n, x) − (−1)nn! ∑ρ

1
(1−ρ)n+1 ]

where

r(χ, n, x) =
(−1)n

x− 1

[
x ∑

ρ

lim
s→ρ

dn

dsn

(
xs−1

s− 1

)
−∑

ρ

lim
s→ρ

dn

dsn

(
xs

s

)]
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Also, following along the same lines as Theorem 2.8.1 of Chapter 2,
unconditionally we have r(χ, n, x)→ 0 as x → ∞.

Now for the Gamma factors, first note

Γ̃(n)
χ (s) = (−1)nn!

[
(a′ + r2)

sn+1 + a
∞

∑
k=0

1
(s + 1 + 2k)n+1

+a′
∞

∑
k=1

1
(s + 2k)n+1 + r2

∞

∑
k=1

1
(s + k)n+1

]

from the residue at s = 0 the Γ̃(n)
χ (1) term will come and we will similarly

be able to write, the total contribution as (x− 1)[`(χ, n, x) + Γ̃(n)
χ (1)]. The

main term of `(χ, n, x) comes from the a′+r2
sn+1 term as before and thus is

� (log x)n

x , in particular `(χ, n, x) → 0 as x → ∞. Therefore we have the
following theorem.

Theorem 4.3.1. For χ 6= χ0, we have, unconditionally

L(n)(1, χ) = lim
x→∞

(−1)n+1 ΨK(χ, n, x)

Remark 4.3.2. Note the difference in the limit formula in comparison to
Theorem 2.8.1, in particular the the absence fo the f (n, x) term.

Remark 4.3.3. Looking at the similarities of the computations for γK,m for
the Dedekind zeta functions of number fields, we can easily deduce some
bounds for these higher coefficients L(n)(1, χ) as well. Here we just write
them, proofs are exactly similar. Under GRH, for |dK| > 8, we have

L′(1, χ)� (log αK,χ)(2 log αK,χ − γK,0)

whereas,

L(m)(1, χ)� 2m

m!
(A + log αK,χ)

m(A + 2 log αK,χ − γK,0)

Where A will be a constant, A = O(log(m!)).
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We will now focus our attention to the case when K = Q and in the
following sections, study the moments of higher derivatives of L(s, χ) at
s = 1, where χ runs over all non-principal multiplicative characters of
large prime conductors. Before that, let us first have a brief look at some
of the rich history of the study of moments of L-functions.

4.4 moments : a brief history

The distribution of values of Dirichlet L-functions L(1, χ), for variable χ

has been studied extensively and has a vast literature. However the study
of the same for logarithmic derivatives L′(1, χ)/L(1, χ) is more recent. Let
m be a prime and Xm denote the set of all non-principal multiplicative
characters χ : (Z/mZ)× → C× and L(s, χ) denote the corresponding
Dirichlet L-function.

For any pair of non-negative integers (a, b) let P(a,b)(z) = zazb. A result
of Paley and Selberg states that (e.g. see [Pal31] )

1
|Xm| ∑

χ∈Xm

P(1,1)(L(1, χ)) = ζ(2) + O((log m)2/m)

This was later improved and by many authors. W. Zhang [Zha90] general-
ized to the case of P(k,k). In [IMS09], Ihara, Murty and Shimura studied the
moments of the logarithmic derivative and proved the following theorem :

Theorem 4.4.1. (Ihara, Murty, Shimura)
Let m be a large prime number, and let Xm be the collection of all
non-principal primitive Dirichlet characters χ : (Z/m)× → C×. Then

1
|Xm| ∑

χ∈Xm

P(a,b)(L′(1, χ)/L(1, χ)) = (−1)a+bµa,b + O(mε−1) (4.18)

for any ε > 0. In particular,

lim
m→∞

1
|Xm| ∑

χ∈Xm

P(a,b)(L′(1, χ)/L(1, χ)) = (−1)a+bµa,b
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Here µa,b is a non-negative real number defined as follows :

µ(a,b) =
∞

∑
n=1

Λa(n)Λb(n)
n2 where Λk(n) = ∑

n=n1···nk

Λ(n1) · · ·Λ(nk)

k > 0 and Λ(n) = log p, when n is a prime power and 0 otherwise (the
von Mangoldt function ).

In the subsequent section the author wishes to derive similar theorems
on moments of the higher derivatives of L(s, χ) = L′(s, χ)/L(s, χ) at s = 1.
Note that, the author was not able to find a good reference that studies
moments of higher derivatives of L(s, χ) at s = 1 but the case of s = 1

2 (and
fractional moments) has been studied by Conrey [CON88], Milinovich
[Mil11], Heath-Brown [HB10], Soundararajan [Sou09], Sono etc. For exam-
ple, Sono [Son14] recently showed :

Under GRH, for 1/2 < k < 2 and m ∈ Z≥0 we have,

1
φ(q) ∑

χ(mod q)
χ 6=χ0

P(k,k)
(

L(m)

(
1
2

, χ

))
� (log q)k2+2km

whereas for k ≥ 2, for any ε > 0, under GRH,

1
φ(q) ∑∗

χ(mod q)
P(k,k)

(
L(m)

(
1
2

, χ

))
� (log q)k2+2km+ε

where ∑∗ is over all primitive Dirichlet characters modulo q.

However note that, methods used in the above do not seem to apply to
our case. Ours is more of an extension of the work done in [IMS09].

4.5 moments of L ′ (1, χ) (conditional : under grh)

Before we dive right into our theorems, let us look at the following neat
connection due to the orthogonality relations of characters.
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Let α : N→ C be such that, for any ε > 0, α(n) = O(nε). Consider the
Dirichlet series (absolutely convergent for Re(s) > 1)

f (s) =
∞

∑
n=1

α(n)
ns

Let X?
m = Xm ∪ {χ0}. For each χ ∈ X?

m, consider the associated series

fχ(s) =
∞

∑
n=1

χ(n)α(n)
ns

Let αk(n) denote the Dirichlet coefficient of n−s in f (s)k for k ≥ 0. Then
from the orthogonality relation for characters lead to the asymptotic
formula : (writing σ = Re(s) )

1
|X?

m|
∑

χ∈X?
m

P(a,b)( fχ(s)) =
m−1

∑
n=1

αa(n)αb(n)
n2σ

+ Oa,b(m1+ε−σ) (4.19)

For any s with σ > 1 + ε. In particular, taking the limit m→ ∞

lim
m→∞

1
|X?

m|
∑

χ∈X?
m

P(a,b)( fχ(s)) =
∞

∑
n=1

αa(n)αb(n)
n2σ

Now one can ask whether this holds for s = 1 (or even for Re(s) ≤ 1) when
X?

m is replaced by Xm. It turns out it depends on the analytic properties of
f (s) to the left of 1. For the case f (s) = L(s, χ), Ihara, Murty and Shimura
in [IMS09], first showed, under GRH, the error term for each χ is small.
This together with bounds obtained for L(1, χ) gives a formula similar to
(4.18), where the main term is same and the error term is O( (log m)a+b+2

m ).

To obtain the unconditional result, as stated in Theorem 4.4.1, they used
Montgomery’s result in [Mon71] on estimating the number of zeros in a
rectangular region for σ ≥ 4/5 and showed that the average value, of the
absolute value of the error terms, is sufficiently small. Following in their
footsteps we also first prove a conditional result.

As mentioned before, for the rest of the chapter, we are considering
the case K = Q, unless otherwise specified. Let m run over all odd prime
numbers and for each m, let Xm be the collection of all non-principal
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primitive Dirichlet characters χ : (Z/m)× → C×. As ususal by Λ(n) we
wil denote the von Mangoldt function :

Λ(n) =

log p if n = pk for some prime p and integer k ≥ 1,

0 otherwise.

Similar to [IMS09], we define

Λ0(n) =

1 n = 1,

0 n > 1

Λk(n) = ∑
n=n1···nk

Λ(n1) · · ·Λ(nk) for k > 0. (4.20)

Note that Λk(n) = 0 unless the sum of exponents in the prime factorization
of n is at least k. Also we have, for 1 ≤ k ≤ r

Λk(pr) = ∑
i1+···+ik=r

Λ(pi1) · · ·Λ(pik)

=

(
r− 1
k− 1

)
(log p)k (4.21)

Following Section 3.8 of [Iha08], we see that if n has the prime factoriza-
tion n = ∏r

i=1 pαi
i then, Λk(n) is the coefficient of the monomial xα1

1 · · · x
αr
r

in the polynomial

(
r

∑
i=1

(log pi)(xi + x2
i + · · ·+ xαi

i )

)k

Letting xi = 1 for all i = 1, · · · r we see that

Λk(n) ≤
(

r

∑
i=1

αi(log pi))

)k

= (log n)k (4.22)

For our purposes, we also define :

`1Λk(n) = ∑
n=n1···nk

Λ(n1) · · ·Λ(nk)(log n1) · · · (log nk) for k > 0.

(4.23)
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and for k = 0 it is equal to Λ0(n). Note that applying arithmetic mean is
greater than or equal to geometric mean inequality we see that :

k

∏
i=1

log ni ≤
(log n)k

kk and so,

`1Λk(n) ≤
(log n)k

kk Λk(n) ≤
(log n)2k

kk (4.24)

We now have a look again on Ψχ(x) as in equation (4.9) or Ψ(χ, 1, x) of
Theorem 4.3.1. In particular, for K = Q, it takes the form :

Ψχ(x) =
1

x− 1 ∑
k,pk<x

k
(

x
pk − 1

)
χ(p)k(log p)2

=
1

x− 1 ∑
k,pk<x

(
x
pk − 1

)
χ(pk)(log p)(log pk)

=
1

x− 1 ∑
n≤x

( x
n
− 1
)

χ(n)Λ(n)(log n) (4.25)

For each pair (a, b) of non-negative integers, we define

µ̃(a,b) = µ̃(b,a) =
∞

∑
n=1

`1Λa(n) `1Λb(n)
n2 (4.26)

Note that µ̃(0,0) = 1, µ̃(a,0) = 0 for all a > 0, in all other cases µ̃ > 0.
In particular,

µ̃(1,1) =
∞

∑
n=1

(
Λ(n) log(n)

n

)2

Theorem 4.5.1. For each pair (a, b) of non-negative integers and for x ≥ m,
we have

1
|Xm| ∑

χ∈Xm

P(a,b) (Ψχ(x)) = µ̃(a,b) + Oa,b

(
(log x)2d

m

)
(4.27)

Here Ψχ(x) is as in equation(4.25) and d = a + b + 1.
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Proof. Note that for χ = χ0, ΨQ(x) = O((log x)2). Thus if we include
the principal character in proving the theorem, it will effect the results
by O

(
(log x)2a+2b

m

)
which is less than the error term. As before, we write

X?
m = Xm ∪ {χ0},

µ̃(a,b)(x) =
1
|X?

m|
∑

χ∈X?
m

P(a,b) (Ψχ(x)) =
1
|X?

m|
∑

χ∈X?
m

Ψχ(x)aΨχ(x)b (4.28)

For our purposes, we present in the following lemma, a general version of
4.2.2 and 4.2.3 of [IMS09].

Lemma 4.5.2. For some x > 1, and χ ∈ X?
m if gχ(x) = ∑n≤x g(x, n)χ(n)

then,
1
|X?

m|
∑

χ∈X?
m

gχ(x)agχ(x)b =
m−1

∑
j=1

λ(a)(j, x)λ(b)(j, x) (4.29)

where

λ(k)(j, x) = ∑
n1,··· ,nk<x

n1···nk≡j (modm)

k

∏
i=1

g(x, ni)

for k ≥ 1, and for k = 0 define λ(0)(j, x) = 1 for j = 1 and 0 for j > 1.
(Recall m here is a prime number and a, b non-negative integers.)

Proof. This is a direct consequence of orthogonality relations of characters.
In particular, a typical term in the sum in the LHS of (4.29) looks like(

a

∏
i=1

g(x, ni)
b

∏
j=1

g(x, mj)

)
χ(n1 · · · na)χ(m1 · · ·mb)

When summed over all χ, it has a nonzero contribution only when
(n1 · · · na) ≡ (m1 · · ·mb) (mod m) and hence we have our result.

Thus applying Lemma 4.5.2, in our case with g(x, n) = 1
x−1

( x
n − 1

)
Λ(n) log n,

we get, gχ(x) = Ψχ(x) and hence from equation (4.28)

µ̃(a,b)(x) =
m−1

∑
j=1

λ(a)(j, x)λ(b)(j, x) (4.30)
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where

λ(k)(j, x) =
1

(x− 1)k ∑
n1,··· ,nk<x

n1···nk≡j (mod m)

k

∏
i=1

(
x
ni
− 1
)

Λ(ni) log ni

=
1

(x− 1)k

[(xk−j)/m]

∑
l=0

∑
n1,··· ,nk<x

n1···nk=j+lm

k

∏
i=1

(
x
ni
− 1
)

Λ(ni) log ni

=
[(xk−j)/m]

∑
l=0

L(k)(j + lm, x) (say) (4.31)

here [.] in the upper limit of the sum, is the greatest integer function. Note
that L(k)(N, x) 6= 0 only when N < xk and in this case,

L(k)(N, x) =
1

(x− 1)k ∑
n1,··· ,nk<x
n1···nk=N

k

∏
i=1

(
x
ni
− 1
)

Λ(ni) log ni

≤ 1
N ∑

n1,··· ,nk<x
n1···nk=N

k

∏
i=1

Λ(ni) log ni

≤ 1
N

`1Λk(N) ≤ (log N)2k

kk N
< kk (log x)2k

N
(4.32)

Thus the net contribution of the terms l > 0 in (4.31) is given by :

[(xk−j)/m]

∑
l=1

L(k)(j + lm, x) < kk (log x)2k

m

(
1 +

1
2
· · ·+ 1

[xk/m]

)
= O

(
(log x)2k+1

m

)
Therefore we have,

λ(k)(j, x) = L(k)(j, x) + O
(
(log x)2k+1

m

)
(4.33)

For the main term, we also use the inequality as in (4.2.9) of [IMS09] :

For x > 0 and i, j ≥ 1 we have (x− i)(x− j) ≥ (x− 1)(x− ij)
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Generalizing,

(x− 1)k ≥ (x− n1) · · · (x− nk) ≥ (x− 1)k−1(x− n1 · · · nk)

Thus for ni ≥ 1 and n1 · · · nk = j,

1
(x− 1)k

k

∏
i=1

(
x
ni
− 1
)
=

1
(x− 1)k

∏k
i=1(x− ni)

j
≤ 1

j

On the other hand,

1
(x− 1)k

k

∏
i=1

(
x
ni
− 1
)
≥ 1

(x− 1)
x− j

j

⇒ 0 ≤ 1
j
− 1

(x− 1)k

k

∏
i=1

(
x
ni
− 1
)
≤ j− 1

j(x− 1)

That is,
1

(x− 1)k

k

∏
i=1

(
x
ni
− 1
)
=

1
j
+ O

(
1
x

)
(4.34)

Note that, in the sum of L(k)(j, x), since j < m, if we choose x ≥ m, the
condition n1, · · · , nk < x is automatic. Thus,

L(k)(j, x) =
1

(x− 1)k ∑
n1···nk=j

k

∏
i=1

(
x
ni
− 1
)

Λ(ni) log ni

=
`1Λk(j)

j
+ O

(
(log m)2k

m

)
(4.35)

and so,

λ(k)(j, x) =
`1Λk(j)

j
+ O

(
(log x)2k+1

m

)
(4.36)
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Plugging this in equation (4.30)

µ̃(a,b)(x) =
m−1

∑
j=1

`1Λa(j) `1Λb(j)
j2

+ O

(
(log x)2(a+b+1)

m

)
(4.37)

Note that for j ≥ m,

∑
j≥m

`1Λa(j) `1Λb(j)
j2

≤ 1
aabb ∑

j≥m

(log j)2a+2b

j2

=

(
(log m)2a+2b

m

)
Therefor for x ≥ m,

µ̃(a,b)(x) = µ̃(a,b) + Oa,b

(
(log x)2(a+b+1)

m

)
(4.38)

and that completes the proof.

We are now ready to prove the main theorem of this section, which is
essentially a corollary of Theorem 4.5.1 and Theorem 4.2.2.

Theorem 4.5.3. Under GRH,

1
|Xm| ∑

χ∈Xm

P(a,b)(L′(1, χ)) = µ̃(a,b) + O

(
(log m)2(a+b+1)

m

)

the implicit constant depends on a, b. In particular,

lim
m→∞

1
|Xm| ∑

χ∈Xm

P(a,b)(L′(1, χ)) = (−1)a+bµ̃(a,b)

Proof. Note that for K = Q, lemma 4.2 takes the form :

L′(s, χ)

L(s, χ)
= −1

2
log

q
π
− 1

2
Γ′

Γ

(
s + a

2

)
+ B(χ) + ∑

ρ

(
1

s− ρ
+

1
ρ

)
(4.39)

For example see p.83 of [Dav00] . Here a = 0 (respectively, a = 1) if χ is
even (resp. odd) and B(χ) = ξ ′(0, χ)/ξ(0, χ). The sum is over all
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non-trivial zeros ρ of L(s, χ), i.e. zeros in the critical strip.

Writing L(s, χ) = L′(s, χ)/L(s, χ) and differentiating we get

L′(s, χ) = −
∞

∑
k=0

1
(s + a + 2k)2 −∑

ρ

1
(s− ρ)2 (4.40)

From the exact formula in (4.12), Lemma 4.2.1 and equation(4.14) we get,
under GRH

L′(1, χ) = Ψχ(x) + O
(

log m log x√
x

+
(log x)2

x

)
(4.41)

the implicit constant being absolute. Putting x = m2 in both equation (4.41)
and Theorem 4.5.1 completes the proof.

Remark 4.5.4. The proof Theorem 4.5.1 and the Lemma 4.5.2 suggests that
we should be able to generalize these ideas for the moments of higher
derivatives, L(n)(1, χ). We will explore more on this in a later section.

Remark 4.5.5. Note that Theorem 4.5.1 is unconditional, we are only using
GRH in Theorem 4.5.3 essentially to estimate the (error) difference between

1
|Xm| ∑χ∈Xm

P(a,b)(L′(1, χ)) and 1
|Xm| ∑χ∈Xm

P(a,b)(Ψχ(x)). Without GRH, it’s

a little more work to manage this error term, but it can be done. This is
what we explore in the next section.

4.6 moments of L ′ (1, χ) (unconditional)

In this section we prove an unconditional version of Theorem 4.5.3 :

Theorem 4.6.1. For any ε > 0, we have, unconditionally,

1
|Xm| ∑

χ∈Xm

P(a,b)(L′(1, χ)) = µ̃(a,b) + O
(

mε−1
)

the implicit constant depends on a, b. In particular,

lim
m→∞

1
|Xm| ∑

χ∈Xm

P(a,b)(L′(1, χ)) = (−1)a+bµ̃(a,b)



4.6 moments of L ′ (1, χ) (unconditional) 73

Remark 4.6.2. The key difference here, is that under GRH, the individual
terms for each χ in the error were small, whereas unconditionally we will
show that the average of the error terms is small. In particular, we will
show that for large x,

1
|Xm| ∑

χ∈Xm

∣∣∣P(a,b)(L′(1, χ))− P(a,b)(Ψχ(x))
∣∣∣� mε−1

To do this, much like Section 5.4 of [IMS09], we will employ zero-sum
estimates of L(s, χ). Note that the above result together with Theorem
4.5.1, will give our unconditional Theorem 4.6.1.

We start with an easy inequality (This was used in 6.8 of [Iha08] and 5.3
of [IMS09]), we include a short proof as well.

Proposition 4.6.3. For any w, z ∈ C we have

|P(a,b)(z + w)− P(a,b)(z)| ≤ (a + b)|w|(|z|+ |w|)a+b−1

Proof. First note that for any n ≥ 1,

|(z + w)n − zn| =
∣∣∣∣(n

1

)
zn−1w + · · ·+

(
n
n

)
wn
∣∣∣∣

≤ n|w|
(

n

∑
i=1

(
n− 1
i− 1

)
|z|n−i|w|i−1

)
= n|w|(|z|+ |w|)n−1

where the last inequality follows from (n
i ) ≤ n(n−1

i−1) for 1 ≤ i ≤ n. Thus,

|P(a,b)(z + w)− P(a,b)(z)| = |(z + w)a(z + w)b − zazb|

= |(z + w)a(z + w)
b − za(z + w)b + za(z + w)b − zazb|

≤ |z + w|b|(z + w)a − za|+ |z|a|(z + w)b − zb|

≤ a|w|(|z|+ |w|)a+b−1 + b(|z|+ |w|)a|w|(|z|+ |w|)b−1

≤ (a + b)|w|(|z|+ |w|)a+b−1
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Choosing, z = L′(1, χ) and w = Ψχ(x)−L′(1, χ) gives,∣∣∣P(a,b)(L′(1, χ))− P(a,b)(Ψχ(x))
∣∣∣ ≤ (a + b)

∣∣Ψχ(x)−L′(1, χ)
∣∣ ·(∣∣Ψχ(x)−L′(1, χ)

∣∣+ ∣∣L′(1, χ)
∣∣)a+b−1

(4.42)

Let us denote the unique real quadratic character in Xm by χ1.

We will show the following bounds :

Proposition 4.6.4.

1. For χ ∈ Xm, x ≥ m and ε > 0, we have∣∣∣P(a,b)(L′(1, χ))− P(a,b)(Ψχ(x))
∣∣∣

�

(log x)2a+2b−1mε(a+b) for χ = χ1(
(log x)2(log m)

)(a+b−1) |Ψχ(x)−L′(1, χ)| for χ 6= χ1

2. For x ≥ m12, we have

∑
χ∈Xm
χ 6=χ1

∣∣Ψχ(x)−L′(1, χ)
∣∣� (log x)16 (4.43)

We postpone the proof of this proposition to the end of this section as
we will need several Lemmas to prove it.

Recall from the exact formula (4.12), and Lemma 4.2.1, for χ ∈ Xm,

∣∣Ψχ(x)−L′(1, χ)
∣∣ = |rχ(x)|+ O

(
(log x)2

x

)
(4.44)
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where, (writing ρ = β + iγ )

|rχ(x)| =
∣∣∣∣∑ ρ(ρ− 1) log x− ρ2 + (1− ρ)2

ρ2(1− ρ)2 · xρ

x− 1

∣∣∣∣
≤ 1

(x− 1) ∑
(

log x
|ρ(ρ− 1)| +

1
|ρ|2 +

1
|(1− ρ)|2

)
xβ (4.45)

Zero-sum estimates

We now write down several lemmas to essentially estimate (4.45) and
prove Prop 4.6.4. These lemmas depends on the behavior and estimates of
zeros of L(s, χ) in the critical strip. To begin with, we will use the following
two well-known results : (due to Gronwall, Titchmarsh, Siegel etc, e.g. see
[Dav00], §14, 16 and 21)

Theorem. (A) There exists an absolute and effective positive constant c
such that if ρ = β + iγ is a non-trivial zero of L(s, χ) with |γ| ≤ T, T ≥ 1,
then either,

Min(1− β, β) >
c

log(mT)

or, χ = χ1 and ρ = β1 or 1− β1 is a real simple zero satisfying β1 > 1
2 and

1− β1 � m−ε.

Theorem. (B) Let Zχ be the set of non-trivial zeros of L(s, χ). Then

#{β + iγ ∈ Zχ : |γ− T| < 1} � log(m(T + 2))

Lemma 4.6.5.

∑′

|γ|≤1

(
log x

|ρ(ρ− 1)| +
1
|ρ|2 +

1
|(1− ρ)|2

)
xβ � x(log mx)(log m)2 (4.46)

where ∑′ is the sum over all ρ excluding the possible exceptional zero.
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Proof. For |γ| ≤ 1, by Theorem (A) with T = 1, and ρ not being exceptional,
we see that |ρ| ≥ |β| � 1

log m , similarly |1− ρ| � 1
log m . Hence,∣∣∣∣ 1

ρ(ρ− 1)

∣∣∣∣� log m,
1
|ρ|2 � (log m)2,

1
|1− ρ|2 � (log m)2

Therefore,

∑′

|γ|≤1

(
log x

|ρ(ρ− 1)| +
1
|ρ|2 +

1
|(1− ρ)|2

)
xβ

� x(log x log m + (log m)2) ∑
|γ|≤1

′ 1

� x(log mx)(log m)2

Lemma 4.6.6. For T ≥ 1

∑
|γ|>T

(
log x

|ρ(ρ− 1)| +
1
|ρ|2 +

1
|(1− ρ)|2

)
xβ � x(log x)(log mT)

T
(4.47)

Proof.

∑
|γ|>T

(
log x

|ρ(ρ− 1)| +
1
|ρ|2 +

1
|(1− ρ)|2

)
xβ

� (x log x) ∑
|γ|>T

1
γ2

� (x log x)
∞

∑
j=[T]

1
j2 ∑
|γ−(j+1)|<1

1

� (x log x)
∞

∑
j=[T]

log(m(j + 3))
j2

� x(log x)(log mT)
T
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The following result is part of the proof of a sublemma (5.4.4) of [IMS09].
We record it here as a lemma and for the sake of completion also include
the proof.

Lemma 4.6.7. (Ihara, Murty and Shimura) For T ≥ 2 and x ≥ (mT)6

∑
χ∈Xm

∑′

ρ∈Zχ

|γ|≤T

xβ � x(log x)14 (4.48)

Proof. Let us denote

S̃(x, m, T) = ∑
χ∈Xm

∑′

ρ∈Zχ

|γ|≤T

xβ

The lemma is a consequence of well-known bounds for the number
N(σ, T, m) related to the number of zeros of L(s, χ) in a rectangle. In
particular, for 0 ≤ σ ≤ 1 and T ≥ 2, define

N(σ, T, χ) = # {ρ = β + iγ ∈ Zχ : β ≥ σ, |γ| ≤ T}

N(σ, T, m) = ∑
χ∈Xm

N(σ, T, χ)

It is well known that N(0, T, χ)� T log(mT) (e.g. see §16 of [Dav00]) and
thus N(0, T, m) � mT log(mT). We will also use the following result by
Montgomery (Theorem 12.1) of [Mon71], also [Mon69] :

For σ ≥ 4/5 and T ≥ 2,

N(σ, T, m)� (mT)
2(1−σ)

σ (log mT)14 � (mT)
5
2 (1−σ)(log mT)14 (4.49)

Similar result can also be found in [HJ77]. We rewrite S̃(x, m, T) as

S̃(x, m, T) = ∑
χ∈Xm

∑′

ρ∈Zχ

|γ|≤T
β<4/5

xβ + ∑
χ∈Xm

∑′

ρ∈Zχ

|γ|≤T
4/5≤β<1

xβ

The first summand is

� x4/5N(0, T, m)� x4/5(mT)(log mT)� x4/5+1/6 log x � x
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where the last inequality is due to the imposed condition x ≥ (mT)6. The
second summand is

≤
∣∣∣∣∫ 1

4/5
xσdσN(σ, T, m)

∣∣∣∣ ≤ x4/5N(4/5, T, m) +

∣∣∣∣∫ 1

4/5
(xσ log x)N(σ, T, m) dσ

∣∣∣∣
� x4/5(mT)1/2(log mT)14 + (log x)(mT)5/2(log mT)14

∫ 1

4/5

(
x

(mT)5/2

)σ

dσ

Note that the first term is� x. Whereas the integral

∫ 1

4/5

(
x

(mT)5/2

)σ

dσ =


(

x
(mT)5/2

)σ

log
(

x
(mT)5/2

)


1

4/5

� x
(mT)5/2(log x)

and so the second term is� x(log mT)14 � x(log x)14. Hence the lemma
is proved.

Lemma 4.6.8. For T > 1 and x ≥ (mT)6 we have

∑
χ∈Xm

∑′

ρ∈Zχ

|γ|≤T

(
log x

|ρ(ρ− 1)| +
1
|ρ|2 +

1
|(1− ρ)|2

)
xβ � x(log x)16 (4.50)

Proof. Keeping similar notation as in [IMS09], 5.6, let us denote,

S(x, m, T) = ∑
χ∈Xm

∑′

ρ∈Zχ

|γ|≤T

(
log x

|ρ(ρ− 1)| +
1
|ρ|2 +

1
|(1− ρ)|2

)
xβ (4.51)

Note that for all ρ with β ≤ 4
5 , S(x, m, T) � x4/5(log mx)(log m)2 � x.

This is essentially from Lemma 4.6.5 and 4.6.6. So let us focus on the zeros
ρ with β ≥ 4

5 . In this case, like before we divide the sum for |γ| ≤ 2 and
2 < |γ| ≤ T. Note that, Since, β ≥ 4

5 > 1
3 , we have

Min(β, 1− β) = 1− β >
c

log(mT)
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Thus,

|ρ(ρ− 1)| ≥ Re ρ(1− ρ) = β(1− β) + γ2 >
c1

log(mT)

|ρ|2 = β2 + γ2 >
16
25

and

|1− ρ|2 ≥ (1− β)2 >
c2

(log mT)2

Thus we have,

S(x, m, T)�
(
(log mT)2 + (log mT)(log x)

)
S̃(x, m, 2) + S1(x, m, T)

(4.52)
where,

S1(x, m, T) = ∑
χ∈Xm

∑′

2<|γ|≤T

xβ

γ2

≤ ∑
j≥0

2j+1≤T

1
4j ∑

χ∈Xm

∑′

2j<|γ|≤2j+1

xβ

≤ ∑
j≥0

2j+1≤T

S̃(x, m, 2j+1)

4j � x(log x)14 (4.53)

Since, x ≥ (mT)6, we thus get, putting equation (4.52) and (4.53) together,

S(x, m, T)� (log mT)(log mTx)x(log x)14 � x(log x)16

We are now ready to prove the proposition.

Proof of Proposition 4.6.4

1. By Lemma 4.6.5 and 4.6.6 with T = 1 we see that, for χ 6= χ1,

rχ(x)� (log x)(log m)2
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and for χ = χ1,

rχ(x)� (log x)(log m)2 + (log x)mε � (log x)mε

This inequality is given by the Theorem (A), stated before Lemma
4.6.5. Putting these in (4.44) we get

|Ψχ(x)−L′(1, χ)| �

(log x)(log m)2 for χ 6= χ1

(log x)mε for χ = χ1

(4.54)

Recall that Ψχ(x) � (log x)2, and so with the above bound for
rχ(x), we get L′(1, χ) � (log x)2(log m) for x ≥ m and χ 6= χ1,
whereas, L′(1, χ1)� (log x)(log x + mε). Substituting these bounds
in equation (4.42) we get, For χ 6= χ1∣∣∣P(a,b)(L′(1, χ))− P(a,b)(Ψχ(x))

∣∣∣� (
(log x)2(log m)

)(a+b−1) |Ψχ(x)−L′(1, χ)|

and for χ = χ1 we get,∣∣∣P(a,b)(L′(1, χ))− P(a,b)(Ψχ(x))
∣∣∣� (log x)mε

(
(log x)2mε

)(a+b−1)

� (log x)2a+2b−1mε(a+b)

2. Putting T = m in Lemma 4.6.6 we get that,

∑
χ∈Xm

1
x− 1 ∑

|γ|>m

(
log x

|ρ(ρ− 1)| +
1
|ρ|2 +

1
|(1− ρ)|2

)
xβ � (log x)(log m)

whereas for T = m, Lemma 4.6.8 gives, for x ≥ m12

∑
χ∈Xm

1
x− 1 ∑′

|γ|≤m

(
log x

|ρ(ρ− 1)| +
1
|ρ|2 +

1
|(1− ρ)|2

)
xβ � (log x)16

Therefore, ∑χ∈Xm
χ 6=χ1

|Ψχ(x)−L′(1, χ)| � (log x)16.

�
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Proof of Theorem 4.6.1

Putting x = m12 in Proposition 4.6.4, we get

∑
χ∈Xm

∣∣∣P(a,b)(L′(1, χ))− P(a,b)(Ψχ(x))
∣∣∣

� (log m)2a+2b−1mε(a+b) + (log m)3(a+b−1) ∑
χ∈Xm
χ 6=χ1

|Ψχ(m12)−L′(1− χ)|

� (log m)2a+2b−1mε(a+b) + (log m)3(a+b−1)+16 � mε′

Hence we have,

1
|Xm| ∑

χ∈Xm

P(a,b)(L′(1, χ)) =
1
|Xm| ∑

χ∈Xm

P(a,b)(Ψχ(m12)) + O(mε′−1)

= µ̃(a,b) + O(mε′−1)

Note that the last equality follows from Theorem 4.5.1 with x = m12. �

4.7 moments of higher derivatives L (n) (1, χ)

We will now generalize the results in section 4.5 to higher derivatives. For
this we look back at Theorem 4.3.1. Recall we defined,

ΨK(χ, r, x) =
1

x− 1 ∑
k, N(P)k< x

kr
(

x
N(P)k − 1

)
χ(P)k(log N(P))r+1
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In particular, for K = Q, it takes the form

Ψ(χ, r, x) = ΨQ(χ, r, x)

=
1

x− 1 ∑
k, pk< x

kr
(

x
pk − 1

)
χ(p)k(log p)r+1

=
1

x− 1 ∑
k, pk< x

(
x
pk − 1

)
χ(pk)(log p)(log pk)r

=
1

x− 1 ∑
n< x

( x
n
− 1
)

χ(n)Λ(n)(log n)r

Therefore we define, for k > 0, r ≥ 0

`rΛk(n) = ∑
n1n2···nk=n

(
k

∏
i=1

Λ(ni)(log ni)
r

)
(4.55)

whereas, for k = 0, `rΛ0(n) = Λ0(n). With this, define, for r ≥ 0,

µ(a,b)(r) =
∞

∑
j=1

`rΛa(j) `rΛb(j)
j2

(4.56)

In particular, µ(a,b)(0) = µ(a,b) as in 4.1.5 of [IMS09] or Theorem 4.4.1,
whereas µ(a,b)(1) = µ̃(a,b) as defined in equation (4.26) in the previous
sections. We are now ready to state a generalization of Theorem 4.5.1.

Theorem 4.7.1. For each pair (a, b) of non-negative integers, r ≥ 0 and for
x ≥ m, we have

1
|Xm| ∑

χ∈Xm

P(a,b) (Ψ(χ, r, x)) = µ(a,b)(r) + Oa,b

(
(log x)(r+1)d+2

m

)
(4.57)

Here d = a + b.

Proof. The proof follows the r = 1 case in Theorem 4.5.1 very closely.
Applying Lemma 4.5.2 with g(x, n) = 1

(x−1)

( x
n − 1

)
Λ(n)(log n)r we get,

1
|X?

m|
∑

χ∈X?
m

P(a,b)(Ψ(χ, r, x)) =
m−1

∑
j=1

λ(a)(j, x) λ(b)(j, x) (4.58)
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where

λ(k)(j, x) = ∑
n1,··· ,nk<x

n1···nk≡j (mod m)

k

∏
i=1

1
(x− 1)

(
x
ni
− 1
)

Λ(ni)(log ni)
r

=
1

(x− 1)k

[(xk−j)/m]

∑
l=0

∑
n1,··· ,nk<x

n1···nk=j+lm

k

∏
i=1

(
x
ni
− 1
)

Λ(ni)(log ni)
r

(4.59)

As before we write it as

λ(k)(j, x) =
[(xk−j)/m]

∑
l=0

L(k)(j + lm, x)

and show that the total contribution from l > 0 terms is small. For this we
note that, L(k)(N, x) 6= 0 only when N < xk and in this case,

L(k)(N, x) ≤ 1
N ∑

n1,··· ,nk<x
n1···nk=N

(
k

∏
i=1

Λ(ni)(log ni)
r

)

≤ 1
N
`rΛk(N) ≤ kk (log x)(r+1)k

N

where the last inequality follows from : ( similar to (4.24) )

`rΛk(n) ≤
(log n)rk

krk Λk(n) ≤
(log n)(r+1)k

krk

and therefore,

[(xk−j)/m]

∑
l=1

L(k)(j + lm, x) < kk (log x)(r+1)k

m

(
1 +

1
2
+ · · ·+ 1

[xk/m]

)

= O

(
(log x)(r+1)k+1

m

)

For the l = 0 term using (4.34) and for x ≥ m we have

L(k)(j, x) =
`rΛk(j)

j
+ O

(
(log m)(r+1)k

m

)
(4.60)
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and hence,

λ(k)(j, x) =
`rΛk(j)

j
+ O

(
(log x)(r+1)k+1

m

)
and so, (writing d = a + b )

1
|X?

m|
∑

χ∈X?
m

P(a,b)(Ψ(χ, r, x)) =
m−1

∑
j=1

`rΛa(j) `rΛb(j)
j2

+ O

(
(log x)(r+1)d+2

m

)

which, together with the inequality :

∑
j≥m

`rΛa(j) `rΛb(j)
j2

≤ 1
(aabb)r ∑

j≥m

(log j)(r+1)(a+b)

j2

= O

(
(log m)(r+1)(a+b)

m

)

proves the theorem.

Now applying Theorem 4.3.1 directly, with x = m2 gives,

1
|Xm| ∑

χ∈Xm

P(a,b)(L(r)(1, χ))

=
1
|Xm| ∑

χ∈Xm

P(a,b)
(
(−1)r+1Ψ(χ, r, m2)

)
+ O

(
(log m)rd

md

)

= (−1)(r+1)d 1
|Xm| ∑

χ∈Xm

P(a,b) (Ψ(χ, r, m2)
)
+ O

(
(log m)rd

md

)

= (−1)(r+1)dµ(a,b)(r) + O

(
(log m)(r+1)d+2

m

)

Here the last line follows from Theorem 4.7.1 with x = m2. Therefore we
have the following general version of Theorem 4.5.3 :

Theorem 4.7.2. Under GRH,

1
|Xm| ∑

χ∈Xm

P(a,b)(L(r)(1, χ)) = (−1)(r+1)dµ(a,b)(r) + O

(
(log m)(r+1)d+2

m

)
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Here d = a + b and the implicit constant depends on a, b. In particular,

lim
m→∞

1
|Xm| ∑

χ∈Xm

P(a,b)(L′(1, χ)) = ((−1)(r+1)dµ(a,b)(r)

Remark 4.7.3. Note that for an unconditional version of the above theorem,
we need to have a closer look at the general rχ(n, x) term. We have,

rχ(n, x) =
(−1)nn!

x− 1

[
x ∑

ρ

lim
s→ρ

dn

dsn

(
xs−1

s− 1

)
−∑

ρ

lim
s→ρ

dn

dsn

(
xs

s

)]

=
(−1)nn!

x− 1 ∑
ρ

[
x

n

∑
k=0

(
n
k

)
xρ−1(log x)n−k · (−1)kk!

(ρ− 1)k+1

−
n

∑
k=0

(
n
k

)
xρ(log x)n−k · (−1)kk!

ρk+1

]

� (log x)n

x ∑
ρ

∣∣∣∣ xρ

ρ(ρ− 1)

∣∣∣∣ (The implicit constant depends on n.)

This reduces the case to that shown by Ihara, Murty and Shimura, see
Sublemma 5.4.4 of [IMS09] with the difference that the implicit constant
depends on n as well, apart from a and b. Therefore we have

Theorem 4.7.4. For any ε > 0 , we have, unconditionally,

1
|Xm| ∑

χ∈Xm

P(a,b)(L(r)(1, χ)) = (−1)(r+1)dµ(a,b)(r) + O
(

mε−1
)

The implicit constant depends on a, b and r. In particular,

lim
m→∞

1
|Xm| ∑

χ∈Xm

P(a,b)(L′(1, χ)) = ((−1)(r+1)dµ(a,b)(r)



5
D I S T R I B U T I O N

5.1 preliminaries

For most of this chapter K is either Q or an imaginary quadratic number
field. In particular K has exactly one Archimedean prime denoted by ℘∞.
Let χ run over all Dirichlet characters on K whose conductor (the non-
archimedean part) is a prime divisor, such that χ(℘∞) = 1.

The average of a complex valued function φ(χ), over a family of χ as
defined above, is taken as follows :

Avgχφ(χ) = lim
m→∞

AvgN(f)≤mφ(χ)

where

AvgN(f)≤mφ(χ) =
∑N(f)≤m

(
∑fχ=f φ(χ)

)
/ ∑fχ=f 1

∑N(f)≤m 1

For the above setting, the following distribution theorem was proved by
Ihara in [Iha08] :

Theorem 5.1.1. (Ihara) For K as above and for σ = Re(s) > 1, there exists a
real valued function Mσ : C→ R satisfying, Mσ(w) ≥ 0, is C∞ in w and∫

C
Mσ(w) |dw| = 1, such that

Avgχ Φ
(

L′(χ, s)
L(χ, s)

)
=
∫

C
Mσ(w) Φ(w) |dw| (5.1)

holds for any continuous function Φ of C. Moreover,

Avgχ ψz

(
L′(χ, s)
L(χ, s)

)
= M̃σ(z)

86
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where M̃σ(z) comes from the Fourier transform of Mσ(z) in the sense that

M̃σ(z) =
∫

C
Mσ(w) ψz(w) |dw|

here ψz : C→ C1 is the additive character ψz(w) = exp(i · Re(zw))

Remark 5.1.2. Note that Ihara shows this more generally, in the sense
that he considers certain function fields of one variable over a finite field
(the theorem is true in this case for σ > 3/4), K = Q and χ runs over
characters of the form N(℘)−τi and when K is a number field having more
that one archimedean prime and χ runs over all “normalized unramified
Grössencharacters” of K modifying the definition of average accordingly.

Remark 5.1.3. In a later paper [IM11], Ihara together with Matsumoto
showed the above theorem for σ ≥ 1

2 + ε, under GRH and with “mild”
conditions on the test function namely, Φ(w) � ea|w| holds for some
a > 0, or Φ is the characteristic function of either a compact subset or the
compliment of such a subset.

Similar distribution result for real characters was also proved by Mour-
tada, my academic sister, in her thesis, see [Mou13], [MM15]. She showed,
for a fundamental discriminant D and a real character χD attached to D,
let

N(y) := {|D| ≤ y : D is a fundamental discriminant}

then the following theorem holds.

Theorem 5.1.4. (Mourtada, Murty) Let σ > 1
2 and assume GRH. Then there

exists a density function Qσ(x) such that

lim
y→∞

1
N(y) ∑

|D|≤y
D fund. disc.

Φ
(

L′(σ.χD)

L(σ, χD)

)
=

1√
2π

∫ ∞

−∞
Qσ(x)Φ(x)dx

holds for any bounded continuous function Φ on R. It also holds when
Φ is the characteristic function of either a compact subset of R or the
complement of such a subset.

Our goal in this chapter is to deduce similar distribution theorems for
higher derivatives of the logarithmic derivative of Dirichlet L-functions.
We have been able to prove results similar to that of Theorem 5.1.1, for
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σ > 1. Whereas generalization of the later developments are still a work in
progress. We’ll show in a concluding section where these later developed
techniques fail if we consider higher derivatives.

5.2 distribution functions : some background

In this section we present some background related to distribution. The
results presented are based on the paper [JW35] of Jessen and Wintner.

Let RK be a k-dimensional Euclidean space and x = (x1, · · · , xk) be a
variable point.

Definition 5.2.1. A completely additive, non-negative set function φ(E)
defined for all Borel sets E in Rk and having the value 1 for E = Rk will
be called a distribution function in Rk.

Notation. An integral with respect to φ will be denoted by∫
E

f (x)φ(dx)

and is to be understood in the Lebesgue-Radon (or Lebesgue-Stieltjes)
sense.

Definition 5.2.2. A set E is called a continuity set of φ if φ(E◦) = φ(E)
where E◦ denotes the set formed by all interior points of E and E is the
closure of E.

Definition 5.2.3. A sequence of distribution functions φn is said to be
convergent if there exists a distribution function φ such that φn(E)→ φ(E)
for all continuity sets E of the limit function φ, which is then unique. We
will use the notation φn → φ .

Proposition 5.2.4. A sequence of distribution functions {φn} converges to
a distribution function φ if and only if∫

Rk
f (x)φn(dx)→

∫
Rk

f (x)φ(dx)

holds for all continuous and bounded functions f . Moreover, if φn → φ

then, ∫
Rk

f (x)φ(dx) ≤ lim inf
∫

Rk
f (x)φn(dx)
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holds for every non-negative, continuous function f .

Definition 5.2.5. If φ1 and φ2 are two distribution functions, then we define
a new distribution function as their convolution, as follows :

φ1 ∗ φ2(E) :=
∫

Rk
φ1(E− x)φ2(dx)

for every Borel set E. Here E− x denotes the set obtained from E by the
translation −x.

Note that one can show, φ1 ∗ φ2 = φ2 ∗ φ1

Definition 5.2.6. The spectrum S = S(φ) of a distribution function φ is
the set of points x ∈ Rk for which φ(E) > 0 for any set E containing x as
an interior point. We note that S is always a non-empty closed set.

Definition 5.2.7. The point spectrum P = P(φ) is the set of points x such
that φ({x}) > 0.

Definition 5.2.8. A distribution function is called continuous if P(φ) is
empty, and is called absolutely continuous if φ(E) = 0 for all Borel sets E
of measure 0.

Proposition 5.2.9. [JW35] A distribution function φ is absolutely continuous
iff there exists a Lebesgue integrable point function D(x) in R such that

φ(E) =
∫

E
D(x)dx

for any Borel set E. We call D(x) the density function of φ.
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5.3 construction of Mσ ,P functions

Let P be any finite set of non-archimedean primes of K and set
TP := ∏℘ C1, where C1 denotes, {z : |z| = 1}.
The following lemma was proved in [Iha08], (Lemma 4.3.1)

Lemma 5.3.1. Let K be as above and χ run over a family as above, excluding
those characters such that fχ ∈ P. For each such χ, let χP = (χ(℘))℘ ∈ TP.
Then (χP)χ is uniformly distributed on TP. i.e. for any continuous function
Ψ : TP → C we have,

Avgχ Ψ(χP) =
∫

TP

Ψ(tP) d∗tP

where d∗t℘ = (2πit℘)−1dt℘ is the normalized Haar measure on the t℘-unit
circle.

Remark 5.3.2. The above lemma is the key ingredient of our results. The
idea is to make suitable change of variables in the above lemma, so that
from the Jacobian a density function can be extracted.

Now define, gσ,P : TP → C by

gσ,P(tP) = ∑
℘∈P

gσ,℘(t℘) where gσ,℘(t℘) =
t℘N℘σ(log N℘)2

(t℘ − N℘σ)2

where tP = (t℘)℘∈P, in particular, |t℘| = 1.

For any character χ of K which is unramified over P, let

LP(χ, s) = ∏
℘∈P

(1− χ(℘) N℘−s)−1

Then we have,

LP(χ, s) :=
L′P(χ, s)
LP(χ, s)

= ∑
℘∈P
−χ(℘)N℘−s log N℘

(1− χ(℘) N℘−s)
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and so,

L′P(χ, s) =
d
ds

L′P(χ, s)
LP(χ, s)

= ∑
℘∈P

χ(℘)N℘−s(log N℘)2

(1− χ(℘)N℘−s)2 = gσ,P(χPNP−it)

where t = Im(s) and χPNP−it = (χ(℘)N℘−it)℘∈P.

For (fχ, P) = 1, since, {χP}χ is uniformly distributed on TP, so is its
translate {χPNP−it}χ. Thus for any continuous function Φ on C, by the
above lemma 5.3.1, applied to Ψ = Φ ◦ gσ,P, we get

Avgχ

(
Φ
(
L′P(χ, s)

))
=
∫

Tp

Φ(gσ,P(tP)) d∗tP (5.2)

We first note the following.

Lemma 5.3.3. For fixed s, with σ = Re(s) > 1, and for P = Py = {℘ :
N℘ ≤ y}, as y→ ∞, L′P(χ, s) tends uniformly to L′(χ, s).

Proof. For any χ we have,

|L′(χ, s)−L′P(χ, s)| ≤ ∑
℘/∈P

N℘σ log N℘2

(N℘σ − 1)2

Thus letting y→ ∞, RHS tends to 0.

Theorem 5.3.4. Let σ > 0. Then there exists a function Mσ,P : C→ R such
that, for any continuous function Φ(w) on C,∫

C
Mσ,P(w)Φ(w)|dw| =

∫
TP

Φ(gσ,P(tP)) d∗tP

where w = x + iy and |dw| = (2π)−1dxdy, and d∗tP is the normalized
Haar measure on TP. This Mσ,P function is compactly supported and
satisfies the following properties :

1. Mσ,P(w) ≥ 0,

2. Mσ,P(w) = Mσ,P(w),
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3.
∫

C
Mσ,P(w) |dw| = 1.

Proof. We first consider the case when |P| = 1, say P = {℘}. Let T℘ = C1

and write t℘ = eiθ and so d∗t℘ = 1
2π dθ.

We consider the open unit disc, z = reiθ for 0 ≤ r < 1 and 0 ≤ θ < 2π.
Consider the map

w = w(z) =
(log N℘)2 reiθ

(1− reiθ)2 =
A reiθ

(1− reiθ)2

For computational brevity we’ll write A = (log N℘)2 as this is just a
constant. Let ρ be a real number such that, N℘−σ < ρ < 1 and let Bρ be
the region surrounded by the curve :

w =
A ρeiθ

(1− ρeiθ)2

Thus w = w(z) gives a one-to-one correspondence between the region Bσ,℘

and the disc Cρ := {z : |z| < ρ}.

Let us now compute the Jacobian of this mapping. We see that,

w(z) = A
r cos θ − 2r2 + r3 cos θ

|1− reiθ |4 + i A
r sin θ − r3 sin θ

|1− reiθ |4 = U + iV (say)

(5.3)
Thus the Jacobian is given by :

J =

∣∣∣∣∣∣
∂U
∂r

∂U
∂θ

∂V
∂r

∂V
∂θ

∣∣∣∣∣∣ =
A2 r |1 + reiθ |2
|1− reiθ |6

Note : This Jacobian was computed using a computer algebra system.
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And so we have∫
T℘

Φ(gσ,℘(t℘)) d∗t℘ =
1

2π

∫ 2π

0
Φ
(

eiθ N℘σ(log N℘)2

(eiθ − N℘σ)2

)
dθ

=
1

2π

∫ 2π

0
Φ
(

eiθ N℘−σ(log N℘)2

(1− N℘−σeiθ)2

)
dθ

=
1

2π

∫ ∫
Bσ,℘

Φ(w)δ(r− N℘−σ) J−1 dU dV

where δ(.) denotes the Dirac delta distribution and w = U + iV. Therefore
we define Mσ,℘(w) in the following way :

Mσ,℘(w) = J−1δ(r− N℘−σ) =
|1− reiθ |6

(log N℘)2 |1 + reiθ |2
δ(r− N℘−σ)

r
(5.4)

for w ∈ Bσ,℘ and Mσ,℘(w) = 0 otherwise. Plugging this in, we get∫
T℘

Φ(gσ,℘(t℘)) d∗t℘ =
∫

C
Mσ,℘(ω) Φ(ω) |dω|

This proves the case P = {℘}. For the general case, we define the function
using convolution product. That is,

Mσ,P(w) = ∗℘∈P Mσ,℘(w)

in other words, for P = P′ ∪ {℘} define

Mσ,P(w) =
∫

C
Mσ,P′(w′) Mσ,℘(w− w′) |dw′| (5.5)

Note that, for any open set U ⊆ C we get,∫
U

Mσ,P(w) |dw| = Vol(g−1
σ,P(U)) (5.6)

where the volume is with respect to d∗tP and thus
∫

C
Mσ,P(w) |dw| = 1.

The Haar measure is normalized, i.e the total volume of TP is 1.

Our next Goal is to show, for P = Py = {℘ : N℘ ≤ y} as before, as
y→ ∞, Mσ,Py(w) converges to a function Mσ(w) uniformly in w.
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Proposition 5.3.5. If P = Py and y → ∞, for σ > 1/2, Mσ,P(w) converges
to Mσ(w) uniformly in w. The limit, Mσ(w) is therefore continuous in w
and non-negative.

Proof. For ℘ /∈ P we have, (writing N℘−σ = q)

|Mσ,P∪{℘}(w)−Mσ,P(w)| =
∣∣∣∣ 1
2π

1
(log N℘)2

∫ 2π

0

|1− qeiθ |6
|1 + qeiθ |2 Mσ,P(z− qeiθ) dθ

∣∣∣∣
� q4

(log N℘)2 �
(

1
N℘σ

)4

Note that, by (1) and (3) of Theorem 5.3.4, Mσ,P is bounded. Thus we see
that Mσ,P(w) converges uniformly to a function, say Mσ(w) for σ > 1/2
(in fact, 1/4).

Remark 5.3.6. We also have,
∫

C
Mσ(w)|dw| = 1. But we will show this

after showing the next theorem. Note that since,
∫

C
Mσ,P(w)|dw| = 1 for

all P, the uniform convergence already gives,∫
C

Mσ(w)|dw| ≤ 1

Theorem 5.3.7. For any s ∈ C with σ = Re(s) > 1

Avgχ Φ(L′(χ, s)) =
∫

C
Mσ(w) Φ(w) |dw| (5.7)

holds for any continuous function Φ of C.

Proof. From equation 5.2 and Theorem 5.3.4 we have,

Avgχ

(
Φ
(
L′P(χ, s)

))
=
∫

Tp

Φ(gσ,P(tP)) d∗tP

=
∫

C
Mσ,P(w)Φ(w)|dw|

The theorem is proved by taking the limit and from Lemma 5.3.3 and
Proposition 5.3.5.
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Note that if we take the particular case of Φ(w) = P(a,b)(w) = wawb,
Then our results from moments give : (Theorem 4.6.1)

(−1)a+bµ̃(a,b) =
∫

C
Mσ(w)P(a,b)(w)|dw|

In particular, taking a = b = 0 gives,∫
C

Mσ(w)|dw| = µ̃(0,0) = 1

Also note that if we consider the Fourier dual of Mσ(z) given by

M̃σ(z) =
∫

C
Mσ(w)ψz(w)|dw|

Then from the above Theorem 5.3.7, we have

M̃σ(z) = Avgχ ψz(L′(χ, s))

5.4 a note on higher derivatives

We note that the above technique theoretically generalizes to higher deriva-
tives. We just need to appropriately choose the gσ,℘(t℘) function such that
for a local factor, we get

L(n)
℘ (χ, s) = gσ,℘(χ(℘)N℘−it)

But note that for higher derivatives, computing these Mσ,P functions
explicitly becomes very involved. Even in our case we used a computer to
simplify the Jacobian.

5.5 possible extension of our result to
1
2 < σ ≤ 1

For σ > 1, the image of gσ,P remains bounded as |P| → ∞. Since the
support of Mσ,P is the image of the mapping, gσ,P, so the support of Mσ is
also bounded. Therefore, in the proof of the above theorem we can just
assume Φ to be continuous.
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This is no longer true for σ > 1
2 , i.e. image of gσ,P need not be bounded.

As remarked earlier, Ihara and Matsumoto, in a later paper [IM11] extends
it to σ > 1/2 under GRH and some conditions on the test function. They
introduced the idea of admissible functions and developed a more general
notion of gσ,℘ which they called g-functions. However their approach does
not seem to apply for higher derivatives. It fails at essential steps in section
3.1 and 3.3 of their paper. We are yet to discover a way of doing this and
this is currently a work in progress.
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