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ABSTRACT. For an elliptic curve E defined over a number field K and L/K
a Galois extension, we study the possibilities of the Galois group Gal(L/K),
when the Mordell-Weil rank of E(L) increases from that of E(K) by a small
amount (namely 1,2 and 3). In relation with the vanishing of corresponding
L-functions at s = 1, we prove several elliptic analogues of classical theorems
related to Artin’s holomorphy conjecture. We then apply these to study the
analytic minimal subfield, first introduced by Akbary and Murty, for the case
when order of vanishing is 2. We also investigate how the order of vanish-
ing changes as rank increases by 1 and vice versa, generalizing a theorem of
Kolyvagin.

1. INTRODUCTION

Let E be an elliptic curve defined over a number field K and let L/K be a finite
Galois extension with Galois group G = Gal(L/K). The famous Mordell-Weil
Theorem tells us that, E(L), the group of L-rational points of E, is finitely gener-
ated. Through out this paper we will focus on the “free part" of the Mordell-Weil
group, that is, E(L) modulo the torsion subgroup E(L)tors and denote the rank
of this quotient by rk E(L). The question of studying this free part of E(L) as
a Z[G]-module is an appealing one and was raised in the works of Mazur and
Swinnerton-Dyer [18], Coates and Wiles [5] etc. Towards this study, Akbary
and Murty in [1] introduced the idea of a minimal subfield : M ⊆ L, minimal,
such that rk E(M) = rk E(L) and produced explicit examples. They gave a de-
scription of the possibilities for Gal(M/K) when the rank E(L) is small (e.g. 1,
2 and 3). In the first part of this paper we generalize their results from small
rank to small increase in rank. We show that similar descriptions of Gal(M/K)
holds when
rk E(L) = rk E(K) + t for t = 1, 2 and 3. In particular we prove :

Theorem 1.1. Let L/K be a Galois extension of number fields and E/K be an
elliptic curve such that rk E(L) = rk E(K) + t. Let M be the minimal subfield.

(1) If t = 1, M is a quadratic extension of K.
(2) If t = 2, M is either a cyclic extension of K with [M : K] = 2, 3,4, 6 or a

dihedral extension of K with [M : K] = 4,6, 8,12.
(3) If t = 3, Gal(M/K) is isomorphic to one of the following :

Cn × Cm where n= 1,2, 3,4 m= 1, 2
D2p × Cm where p = 2, 3,4, 6 m= 1, 2
A4 × Cm or, S4 × Cm where m= 1, 2

Section 2 is largely devoted to proving the above Theorem starting with a

precise definition of the Minimal subfield.
1
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We then venture on a more analytic side of things. The famous Birch-Swinnerton-

Dyer conjecture connects the rank of an elliptic curve to the order of vanishing

of its L-function at s = 1. In this regard, Akbary and Murty introduced the an-

alytic notion of the minimal subfield in [1]. Its existence is dependent on the

holomorphy of L(E/K ⊗ χ, s) for irreducible characters χ of the Galois group.

For number fields, classical theorems of Foote-Murty and Foote-Wales, shows

holomorphy of Artin L-functions when the Dedekind zeta function has a zero of

small order. In section 4 and 5 we develop elliptic analogues of these theorems.

For example we show,

Theorem 1.2. Suppose that E satisfies the generalized Taniyama conjecture over
K. Let F be a galois extension of K with solvable galois group G = Gal(F/K). Let
χ be an irreducible character of G. Then, L(E/K⊗χ, s) is holomorphic at s =ω if
ω is a zero of L(E/F, s) of order r ≤ p2−2, where p2 is the second smallest prime
factor of |G|.

We also prove the r = 2 case. These results establish existence of the analytic

minimal subfield unconditionally when the L-function of E over the top field has

a zero of small order. In section 6, similar to the algebraic case, we investigate

the possibilities of the galois group for the analytic minimal subfield, when the

order of vanishing at s = 1 of L(E/F, s) is 2. As an application, we show the

following slight generalization of a theorem of Kolyvagin :

Theorem 1.3. Let K/Q be a solvable Galois extension.

(i) rank E(K) = rank E(Q) + 1⇒ ords=1 L(E/K , s)≥ ords=1 L(E/Q, s) + 1

(ii) If L(E/Q⊗ χ, s) is holomorphic at s = 1, for every irreducible character
χ of Gal(K/Q) and ords=1 L(E/K , s) = ords=1 L(E/Q, s) + 1, then
rank E(K)≥ rank E(Q) + 1

In both cases equality holds if the algebraic and the analytic minimal subfields are
equal.

We also show that the holomorphy condition in (ii) can be dropped if E has

CM.

2. ALGEBRAIC MINIMAL SUBFIELD

Definition 2.0.1. Let E/K be an elliptic curve and let L/K be a finite extension

(not necessarily Galois) of number fields. Suppose that rank E(L) = r. The

algebraic minimal subfield M is a subfield with K ⊆ M ⊆ L satisfying :

(i) rk E(M) = r.

(ii) If K ⊆ F ⊆ L with rk E(F) = r, then M ⊆ F .

Akbary and Murty showed that for any finite extension L/K and elliptic curve

E/K , the minimal subfield M exists and is unique. Also, if L/K is Galois then
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M/K is Galois. (see Prop. 1 of Section 2 in [1].) For any finite Galois extension

L/K , the Galois group Gal(L/K) acts on E(L) ⊗ Q giving us a representation

(writing r = rk E(L) )

ρL : Gal(L/K)→ Aut (E(L)⊗Q)∼= GLr(Q) (2.0.1)

Proposition 2.0.2. Let L/K be a finite Galois extension with rk E(L) = r and

let M be the minimal subfield. Then

ρ : Gal(M/K)→ Aut (E(M)⊗Q)

is faithful. Moreover, Im (ρ) is conjugate to a finite subgroup of GLr(Z)

Proof. For a detailed proof see Prop 2, Section 2 in [1]. But the essential idea is

that M is constructed as the fixed field of kerρL . □

2.1. Working with the Quotient space. We will write VF = E(F)⊗Q for any

number field F . Our idea comes from elementary linear algebra : to work with

the quotient space VL/VK (∼= V⊥K ) instead of VL and prove a similar version of

the above proposition. Note that dimension of this quotient space is precisely

the increase in rank, i.e.

dim VL/VK = rk E(L)− rk E(K).

We can then consider the quotient representation coming from the Galois ac-

tion. For the algebraic minimal subfield, this representation also turns out to be

faithful.

Proposition 2.1.1. Let L/K be a finite Galois extension with rk E(L) = r and

let M be the algebraic minimal subfield. If rk E(L)− rk E(K) = t, then there

exists a faithful representation :

ρ̃ : Gal(M/K)→ GL(VM/VK)∼= GLt(Q)

Moreover, Im (ρ̃) is conjugate to a finite subgroup of GLt(Z).

Proof. By Proposition 2.0.2, we know there is a faithful representation

ρ : Gal(M/K)→ GL(VK). We can then consider the quotient representation :

ρ̃ : Gal(M/K)→ GL(VM/VK), where ρ̃(g) · (v + VK) = ρ(g) · v + VK .

Now let us compute ker ρ̃.

ρ̃(g)(v + VK) = ρ̃(1)(v + VK)

⇒ ρ(g)v − v ∈ VK

⇒ ρ(g) (ρ(g)v − v) = ρ(g)v − v [Since g acts trivially on VK]

⇒ (ρ(g)2 − 2ρ(g) + It)v = 0 for all v ∈ VM
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Thus the minimal polynomial of ρ(g) divides the polynomial x2 − 2x + 1 =
(x − 1)2. Since Gal(M/K) is finite, the minimal polynomial will also divide

xn − 1, where

n = |Gal(M/K)|. Thus the minimal polynomial must be x − 1, and hence

ρ(g) = It = ρ(1). Since, ρ is faithful, g = 1. Thus, ρ̃ is also faithful.

The other part is true more generally, any finite subgroup of GLn(Q) has a con-

jugate in GLn(Z). For a proof see, Theorem 1, App. 3 (P.124) of [23]. □

Remark 2.1.1. Note that this immediately proves part (i) of our main theorem

1.1. That is, if the rank increases by 1, it must do so in a quadratic extension.

This is because ρ̃ : Gal(M/K) → GL1(Q) ∼= Q∗. Moreover, since the Galois

group is finite, this implies, Gal(M/K) ∼= {±1}, and hence [M : K] = 2. For

other parts, we need some more Group Theory.

2.2. Results from Group Theory. In this subsection we present a number of

elementary results from Group Theory as lemmas. For proofs, please see Section

3 of [1].

Lemma 2.2.1. Let ρ : G→ GL2(Z) be a faithful representation.

(1) If ρ is reducible, then G ∼= Cn or, Z/2Z⊕Z/2Z, where n= 1, 2,3, 4,6

(2) If ρ is reducible, then G ∼= D2n, where n= 3,4, 6.

Lemma 2.2.2. Let ρ : G → GL3(Z) be a faithful representation. Then G is

isomorphic to one of the following :

Cn × Cm where n= 1,2, 3,4 m= 1, 2

D2p × Cm where p = 2, 3,4, 6 m= 1, 2

A4 × Cm where m= 1, 2 and

S4 × Cm where m= 1,2

2.3. Proof of Theorem 1.1.

Proof. Applying Proposition 2.1.1 and the above two lemmas 2.2.1 and 2.2.2

we get our result directly. □

Theorem 1.1 (1) is particularly interesting as it implies the following :

Corollary 2.3.1. In a cubic extension or, for that matter, in any extension of

odd degree, the rank can not increase by 1. It either remains the same or jumps

by at least 2.

Remark 2.3.1. Note that generalization to larger values of t becomes heavily

reliant on the knowledge of classification of finite subgroups of GLn(Z). How-

ever we present here the following easily observed result. We haven’t included

it as a theorem as the author is unsure of whether or not it is vacuous.
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Let L/K be a solvable Galois extension of degree n such that rk E(L) = rk E(K)+
t, where t is odd. Let M be its minimal subfield. If the quotient representation

ρ̃ : Gal(M/K)→ GLt(Q) is irreducible, then t | n.

The proof follows from theses two results :

(a) Let G be a finite group. The degree of every irreducible representation

of G over an algebraically closed field k of characteristic 0, divides the

order of G.

For a proof see [22], 6.5.

(b) Theorem (Dixon) Let G be a finite solvable irreducible subgroup of

GLn(K) where K is a real field and n is an odd integer. Then G is

absolutely irreducible. (see Theorem 1 of [6] and [7].)

If in fact, t = p is prime, then the above mentioned papers of Dixon will give

a nice description of the Galois Group as well. But we think that requiring ρ̃ to

be irreducible for larger ranks, might be asking too much.

3. ANALYTIC MINIMAL SUBFIELD

In this section we focus on the analytic counterpart of the algebraic minimal

subfield.

Definition 3.0.1. Let E be an elliptic curve defined over K and F be any finite

extension of K . For each zero ω of L(E/F, s), the analytic minimal subfield Fω
is a subfield over K with K ⊆ Fω ⊆ F such that

(i) ords=ω L(E/Fω, s) = ords=ω L(E/F, s) and

(ii) If K ⊆ M ⊆ F and ords=ω L(E/M , s) = ords=ω L(E/F, s), then Fω ⊆ M .

Proposition 3.0.2. If F/K is Galois with Galois group G and L(E/K ⊗χ, s) is

holomorphic at s = ω for any irreducible character χ of G, then Fω exists and

is Galois over K .

For a proof see Proposition 6 of Section 6 in [1]. We mention the construc-

tion here, as we will be using this in Section 6. The idea is to consider those

characters for which the twisted L-function vanishes at ω, i.e.

Zω = {χ | L(E/K ⊗χ,ω) = 0}

Then define

Hω =
⋂

χ∈Zω

Ker χ

The minimal subfield Fω is the fixed field, KHω of Hω in F .

Thus we are interested to investigate holomorphy of L(E/K⊗χ, s). We recall

some classical theorems on Artin’s holomorphy conjecture. Let F/K be a Galois
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extension.

Theorem (Stark) If s0 is a simple zero of the Dedekind zeta function ζF (s), then

L(s,χ) is analytic at s = s0 for every irreducible character χ of Gal(F/K).
(see Theorem 3, P144 in [25])

The following elliptic curve analogue of Stark’s theorem is due to Akbary and

Murty (see Proposition 7, [1]) :

Theorem (Akbary-Murty) Suppose that E satisfies the generalized Taniyama

conjecture over K . Let F be a solvable extension of K and let χ be an irreducible

character of G =Gal(F/K). Then, L(E/K ⊗χ, s) is holomorphic at s =ω if ω is

a simple zero of L(E/F, s).

Using this they showed, under the same assumptions as above (including zero

being simple), the analytic minimal subfield Fω exists. Moreover, Fω is a cyclic

extension of K and if ω is real then [Fω : K]≤ 2. We recall,

Definition 3.0.3. E is said to satisfy the generalised Taniyama conjecture over a

number field K if the L-function L(E/K , s) is the L-function L(π, s) of a cuspidal

automorphic representation π of GL2(AK), where AK is the adèle ring of K .

Note that for K = Q, in 1995 Wiles and Taylor first proved modularity for

semi-stable elliptic curves defined over Q. In 2001, B. Conrad, F. Diamond,

Richard Taylor and C. Breuil, proved that any elliptic curve E/Q is modular.

From works of Taylor, Kisin, Wintenberger etc the following result on potential

modularity is also known: If E/K is a elliptic curve, where K is a totally real

field, then there is a totally real extension L/K such that E/L is modular. See

for example, [28], [26], [3], [15] etc.

In the classical case, some generalizations of Stark’s theorem is known. These

results, as stated below, due to Foote, Murty and Wales, eases the condition on

ω, from being a simple zero to a zero of small order. In the next section, we

will prove the elliptic curve analogue of such theorems.

Theorem (Foote-Wales) Let F/K be a Galois extension of number fields with

solvable Galois group G. If the Dedekind zeta function of F , ζF (s) has a zero at

s = s0 of order less than or equal to 2, then all Artin L-series L(s,χ) are analytic

at s = s0 for every irreducible character χ of G.

For a proof, see the Corollary to Theorem II of [10].

Theorem (Foote-Murty) Let F/K be a Galois extension of number fields with

solvable Galois group G and let p2 be the second smallest prime number dividing

|G| . If ζF (s) has a zero of order r at s = s0, where r ≤ p2 − 2, then L(s,χ) is
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analytic at s0 for all irreducible characters χ of G.

For a proof see P.8 of [9]. Also note that, in case |G| has only one prime factor,

i.e. |G| is a prime power, then G is nilpotent and L(s,χ) is known to be analytic

in such cases. The key idea behind both of the above two results, was trying to

find minimal counter examples to Artin’s holomorphy conjecture.

3.1. Known Cases. Assuming the generalized Taniyama Conjecture for K , M.

Ram Murty and V. Kumar Murty in [19] proved that if F/K is contained in a

finite solvable Galois extension of K , then L(E/F, s) is holomorphic. Their re-

sult is predicted by the more general conjecture in Langlands program which

states that if π1 and π2 are cuspidal automorphic representations of GLn(AK)
and GLm(AK), respectively, then π1 ⊗ π2 is an automorphic representation of

GLnm(AK). This is known for m = 1, as Abelian twists are automorphic. The

GL(2)×GL(2) case was proved by Ramakrishnan in [21] and the GL(2)×GL(3)
by Kim and Shahidi in [14]. In [2] Arthur and Clozel proved that the Langlands

reciprocity is valid for all nilpotent Galois extensions using their theory of au-

tomorphic induction. Therefore assuming the generalized Taniyama conjecture

for E/K , and Gal(F/K) nilpotent, we see that L(E/K ⊗χ, s) is automorphic for

any irreducible character χ of Gal(F/K).

Recently Wong in [29] have generalized the above result to certain cases of

“nearly nilpotent" and “abelian-by-nilpotent" galois extensions. In a subsequent

section, while proving the elliptic analogue of Foote-Wales’s theorem, we will

use similar ideas to eliminate one of the possibilities.

4. ELLIPTIC ANALOGUE OF FOOTE AND MURTY’S THEOREM

Theorem 4.0.1. Suppose that E satisfies the generalized Taniyama conjecture

over K . Let F be a galois extension of K with solvable galois group G =Gal(F/K).
Let χ be an irreducible character of G. Then, L(E/K ⊗ χ, s) is holomorphic at

s = ω if ω is a zero of L(E/F, s) of order r ≤ p2 − 2, where p2 is the second

smallest prime factor of |G|.

Remark 4.0.1. Note that if |G| has only one prime factor, then G is nilpotent

and from the discussion above, L(E/K ⊗χ, s) is known to be automorphic.

As an immediate corollary we get

Corollary 4.0.2. Under the same conditions of the above theorem, the minimal

subfield Fω exists if ω is a zero of L(E/F, s) of order r ≤ p2−2, where p2 is the

second smallest prime factor of |G|.



8 SAMPRIT GHOSH

4.1. Ingredients for the proof of Theorem 4.0.1. The following Aramata-

Brauer type theorem was proved in [19] :

Theorem 4.1.1. Suppose that E satisfies the generalized Taniyama conjecture

over K . If F is a solvable Galois extension of K , then L(E/F, s) extends to an en-

tire function and L(E/F,s)
L(E/K ,s) is entire. In particular, ords=ω L(E/F, s)≥ ords=ω L(E/K , s).

Let F/K be a solvable Galois extension with Galois goup G. Let H be a sub-

group of G. Let χ and ψ denote the irreducible characters of G and H respec-

tively. Consider the virtual Heilbronn characters

θG =
∑

nχχ and θH =
∑

nψψ

where nχ denotes the order of zero of L(E/K ⊗ χ, s) at s = ω and nψ denotes

the order of zero of L(E/F H ⊗ψ, s) at s =ω (F H being the fixed field of H).

Proposition 4.1.2. θG|H = θH .

For a proof see Proposition 1 of [19].

We now look at some more group theoretic results which will be used in the

proof of Theorem 4.0.1.

Theorem 4.1.3. (Blichfeldt) Let G be a finite group admitting a faithful, irre-

ducible complex representation ρ. If G possesses a non-central abelian normal

subgroup, then ρ is induced from a proper subgroup of G.

For a proof see, Corollary 50.7 at P348 of [4].

Theorem 4.1.4. (Ito) Let G be a solvable group such that G has a faithful

character of degree < p − 1, for a prime p. Then G admits an abelian normal

Sylow p-subgroup.

For a proof see, Theorem 24.6, P128 of [8]

Proposition 4.1.5. Any solvable non-abelian group G has a normal subgroup

K of prime index such that K contains Z(G).

Proof. G being non-abelian, G1 = G/Z(G) is a non-trivial solvable group. Let H
be a maximal normal subgroup of G1. Then G1/H is solvable and simple and

hence is cyclic of prime order. Thus the index of H in G1 is prime. Taking K to

be the pre-image of H1 proves the proposition. □

We also recall the following result from Clifford’s theory (e.g see, P53-54,

[8])



MINIMAL SUBFIELDS OF ELLIPTIC CURVES 9

Proposition 4.1.6. Let N be a normal subgroup of G with [G : N] = p, a prime.

Then for any irreducible character χ of G, either χ|N is irreducible, or χ|N =
∑p

i=1ψi , where ψi are distinct and irreducible characters of N . Moreover, χ =
IndG

H ψi .

4.2. Proof of Theorem 4.0.1. The proof is based on the idea of minimal counter

examples as that of its classical counterpart. Assume the Theorem is false and

suppose F, K are chosen to form a counter example with [F : K] minimal.

Thus there exists an irreducible character χ of G and a point s = ω such that

ω is a zero of L(E/F, s) of order satisfying the conditions in the theorem but

L(E/K⊗χ, s) has a pole at s =ω, i.e. nχ < 0 in the virtual Heilbronn character

θG at s =ω.

Note that G can not be cyclic, since L(E/K ⊗χ, s) is known to be analytic for

cyclic extensions F/K for every irreducible character χ of G. See for example,

proof of Theorem 2 in P492 of [19].

Step 1 : Every irreducible character χ of G with nχ < 0 is faithful.

Note that by the generalized Aramata-Brauer Theorem 4.1.1, for every

field D with K ⊆ D ⊆ F , we have ords=ω L(E/D, s) ≤ ords=ω L(E/F, s).
Thus for any character χ with a pole at s = ω, one can consider D =
Fkerχ , the fixed field of kerχ. Thus the conditions of the hypothesis for

the counter example carries over to D, G/kerχ, K . By minimality of

|G|, we must have Kerχ = {1}.

Step 2 : θH is a character of H, for all proper subgroups H of G.

By Proposition 4.1.2, we have θG|H = θH for any subgroup H of G. We

have the factorization :

L(E/F, s) =
∏

χ ∈ Irr(G)

L(E/K ⊗χ, s)χ(1)

Thus ords=ωL(E/F, s) = r =
∑

χ ∈ Irr(G) nχχ(1) = θG(1). Suppose ψ

is an irreducible character of H. Consider the L-series L(E/F H ⊗ψ, s).
Now θH(1) = θG|H(1) = r. Thus ifω is a pole, the triple F, H, F H forms

a counter example contradicting minimality. Thus for every irreducible

character ψ of H, L(E/F H ⊗ψ, s) is analytic at s = ω, in particular,

nψ ≥ 0⇒ θH is a character. Note that, by assumption, θG is not a char-

acter.
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Step 3 : Any irreducible χ of G with nχ < 0, is not induced from any proper
subgroup of G.

Suppose χ = IndG
H ψ for a character ψ of a proper subgroup H of G,

then

L(E/K ⊗χ, s) = L(E/F H ⊗ψ, s) =
∏

φ

L(E/F H ⊗φ, s)aφ

where charactersφ are the irreducible constituent ofψwith coefficient

aφ . By the previous step, since H is a proper subgroup, the factors is

analytic at s =ω, in particular L(E/F H ⊗ψ, s) is analytic at s =ω con-

tradicting nχ < 0.

Step 4 : G has no faithful character of degree ≤ p2 − 2. In particular, if χ is an
irreducible character of G with nχ < 0 then χ(1)> p2 − 2.

If G has a faithful character of degree ≤ p2 − 2, then by Ito’s Theorem

4.1.4, G will have normal abelian Sylow pi-subgroups for all prime fac-

tors pi , i ≥ 2 of G. Also, all of them will be central and hence Z(G) will

have index, a power of p1 in G. In particular, G/Z(G) will be nilpotent

and hence G will be nilpotent contradicting the existence of χ.

Note that, this in particular implies G is non-abelian.

Step 5 : We now decompose θG into three constituents θnf , θ+ and θ− as follows

• θnf is the sum of all constituents nλλ of θG such that λ is an irre-

ducible character of G that is not faithful. (hence the “nf ” ).

• θ+ is the sum of all constituents nψψ of θG such that ψ is an irre-

ducible character of G that is faithful and nψ > 0.

• θ− =
∑

(−nχ)χ, where nχχ are all those constituents of θG such

that χ is an irreducible character of G that is faithful and nχ < 0.

From Step 1, all the coefficients of θnf are non-negative. Thus θnf is

either a character or 0. By construction θ− is a character (since there

is at least one irreducible character χ with nχ < 0) and θ+ is either a

character or 0. Also note that, by construction, 〈θnf ,θ−〉= 0 as well as

〈θ+,θ−〉= 0 and 〈θ+,θnf 〉= 0 and

θG = θnf − θ− + θ+

The final contradiction will come from showing θ+ = θ−.
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Step 6 : In any finite group X , every normal subgroup appears as one of the

subgroups in a chief series X = X1 ≥ X2 ≥ · · · ≥ Xn−1 ≥ Xn = {1}
where each X i ⊴ G. In particular, for our solvable G the chief factors

Gi/Gi+1 are elementary abelian p-groups. In particular the last chief

factor Gn−1/{1} is a non-trivial abelian group. That is, every normal

subgroup of G contains a non-trivial abelian p-group that is normal in

G. We have already seen that every abelian normal subgroup of G is

central.

Thus for every irreducible character λ of G that is not faithful, Ker

λ∩ Z(G) ̸= 1.

By Proposition 4.1.5, G has a normal subgroup N ⊇ Z(G), of prime

index, say p.

Step 7 : 〈θ−|N ,θnf |N 〉N = 0

Firstly, note that χ|N is irreducible, for every irreducible constituent

χ of θ−. Since, if not, then from Proposition 4.1.6, we have χ|N =
ψ1+ · · ·+ψp for some irreducible charactersψi of N and χ = IndG

H ψ1,

contradicting Step 3.

Now for any irreducible constituent λ of θnf , we have seen Ker λ ∩
Z(G) ̸= {1}, i.e. λ|N is not faithful as N ⊇ Z(G). Again by Prop. 4.1.6,

either λ|N is irreducible, or is induced from irreducible constituents,

thus they also have to be not faithful. Hence 〈θ−|N ,θnf |N 〉N = 0

Step 8 : θ+|N = θ−|N

By step 2, θN is a character. Also, by Proposition 4.1.2, θN = θG|N =
θ+|N − θ−|N + θnf |N . Therefore, by step 7, either θ+|N = θ−|N or

θ+|N = θ−|N +φ for some character φ of N . Assume the second, then

r = θG(1) = θG|N (1) = φ(1) + θnf (1) (4.2.1)

Let φ1 be an irreducible constituent of φ, and hence of θ+|N . If ψ

is an irreducible constituent of θ+ such that φ1 occurs in ψ|N , we see

that ψ|N ̸= φ1. This is because, φ1(1) ≤ r by equation 4.2.1 where as

ψ being faithful, ψ|N (1) > p2 − 1 ≥ r by step 4. Applying Prop. 4.1.6

again, ψN = φ1 + · · ·+φp. These are distinct G-conjugate irreducible
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characters of N . Since, φ1 is an irreducible constituent of φ and φ =
(θ+ − θ−)|N is a G-stable character of N , each φ must also appear as a

constituent of φ. Thus we conclude

ψ(1) = φ1(1) + · · ·+φp(1)≤ φ(1)≤ r

This is a contradiction, thus θ+|N = θ−|N .

Final Step : Let g ∈ G\N and let H be the subgroup generated by g and Z(G). Since,

H is Abelian, H ̸= G. Let λ be a constituent of θnf , then from step 6,

kerλ∩Z(G) ̸= {1}, Thus the same holds for IndG
H(λ|H). Let χ be an irre-

ducible constituent of θ−, hence is faithful and so, 〈χ, IndG
H(λ|H)〉= 0.

Hence by Frobenius reciprocity, 〈χ|H ,λ|H〉 = 0 and so like in Step 7,

〈θ−|H ,θnf |H〉H = 0. Now θH = θG|H = θG|H = θ+|H − θ−|H + θnf |H .

As before, either θ+|H − θ−|H is zero or a character and arguing in the

exact same way as step 8, we get θ+|H = θ−|H . Hence θ+(g) = θ−(g)
for all g ∈ G \ N . Combining with Step 8, gives θ+ = θ−.

This is a contradiction and hence the theorem is proved. □

5. ELLIPTIC ANALOGUE OF FOOTE AND WALES’S THEOREM

Theorem 5.0.1. Suppose that E satisfies the generalized Taniyama conjecture

over K . Let F be a galois extension of K with solvable galois group G =Gal(F/K).
Let χ be an irreducible character of G. Then, L(E/K ⊗ χ, s) is holomorphic at

s =ω if ω is a zero of L(E/F, s) of order ≤ 2.

The proof of this theorem follows its counterpart more directly than the pre-

vious one, because of the following theorem :

Theorem 5.0.2. (Foote-Wales) Let G be a finite group with a virtual character

θ satisfying the following conditions :

(1) θ (1)≤ 2,

(2) θ is not a character of G but θ |H is a character for every proper subgroup

H of G and

(3) If χ is any irreducible constituent of θ such that 〈θ ,χ〉 < 0, then χ is

faithful, non-linear and is not induced from any proper subgroup of G.

Then θ (1) = 2 and G ∼= SL2(p) for some prime p ≥ 5, ordSL2(3).

Note that in their notation,dSL2(3) denotes any non-trivial semidirect prod-

uct of the quaternion group of order 8 by a cyclic 3-group. For a proof, see
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Theorem III, [10]

Note that our further assumption of G being solvable implies that G can’t

be SL2(p) (p ≥ 5). FordSL2(3), Foote-Wales tackles this possibility by quoting

a deep result of Langlands which shows that Artin’s holomorphy conjecture is

true in the case when G/Z(G) ∼= A4. We address this in our next proposition.

The proof can be seen as consequence of a theorem of Wong in [29]. But for

the sake of completeness we present it here.

Proposition 5.0.3. Suppose that E satisfies the generalized Taniyama conjec-

ture over K . Let F be a galois extension of K with solvable galois group isomor-

phic todSL2(3). Let χ be an irreducible character of G. Then, L(E/K ⊗ χ, s) is

automorphic and hence entire.

Proof. Note that Q8 Ã dSL2(3) and the quotient is a 3-group, in particular, is

nilpotent. A result of Horváth (see Proposition 2.7, [12]) says that this makes
dSL2(3) an SM-group relative to Q8, i.e. every irreducible character χ ofdSL2(3),
is induced from an irreducible character ψ of a subnormal subgroup H conta-

tining Q8. Moreover, ψ|Q8
is irreducible and hence ψ(1) = ψ|Q8

(1) ≤ 2. Note

that since the only prime factors ofdSL2(3) and hence of H, are 2 and 3, ψ can

not be the icosahedral type (in degree 2).

Now if ψ is of degree 1, then from Artin reciprocity, ψ can be seen as an

idèle class character. If ψ is of degree 2, from theorems of Langlands and Tun-

nell ([17], [27]), ψ is associated to a cuspidal automorphic representation πψ
of GL2(AKH ).

Since H is subnormal, there exists a subnormal series,

H = H0 Ã H1 Ã · · ·Ã Ht =dSL2(3)

Moreover since we assumed solvability, Hi+1/Hi is of prime degree. Therefore,

by repeated application of Arthur and Clozel’s theory of base change for cyclic

extensions, the base change map B(π) ∈ GL2(AKH ) exists (recall, we are writ-

ing, L(E/K , s) = L(π, s)). Now

L(E/K ⊗χ, s) = L(E/K ⊗ IndG
H ψ, s) = L(E/KH ⊗ψ, s) = L(B(π)⊗πψ, s)

Since functoriality is known in cases of GL(n)×GL(1) and GL(2)×GL(2), the

latter due to Ramakrishnan, [21] and we saw that eitherψ is an idèle class char-

acter or a automorphic representation of GL(2), so L(E/K⊗χ, s) is automorphic

and hence entire. □
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5.1. Proof of Theorem 5.0.1. As in the case of the elliptic analogue of Foote-

Murty’s theorem, take a counter-example F/K with [F : K]minimal. Thus there

exists an irreducible character ψ of G = Gal(F/K) and a point s =ω such that

ω is a zero of L(E/F, s) of order ≤ 2 but L(E/K ⊗ψ, s) has a pole at s =ω.

Set θ = θG =
∑

nχχ. Note that nψ < 0. Since we have the factorization :

L(E/F, s) =
∏

χ ∈ Irr(G)

L(E/K ⊗χ, s)χ(1)

Thus θG(1) =
∑

χ ∈ Irr(G) nχχ(1) = ords=ωL(E/F, s)≤ 2. Moreover, we can then

carry out Steps 1 - 4, as it is, in the proof of Theorem 4.0.1.

Hence all the conditions of Theorem 5.0.2 are satisfied. But then the solvability

assumption eliminates SL2(p) and Proposition 5.0.3 eliminates dSL2(3) giving

us a contradiction. □

Remark 5.1.1. Note that both Theorem 4.0.1 and Theorem 5.0.1 are uncondi-

tional if we assume the base field is Q, modularity being known.

6. APPLICATIONS TO MINIMAL SUBFIELDS

We now look at some applications of our theorems in the context of analytic

and algebraic minimal subfields.

Theorem 6.0.1. Let E/K be an elliptic curve and F/K be a finite Galois ex-

tension with solvable Galois group G = Gal(F/K). Suppose that E satisfies the

generalized Taniyama conjecture over K and L(E/F, s) has a double zero at ω.

Then the analytic minimal subfield Fω exists. Further, if ω is real, then G =
Gal(Fω/K) satisfies one of the following :

(i) G is either cyclic or dihedral.

(ii) Z(G)∼= Z/2Z and G/Z(G)∼= Dn, A4 or, S4.

Proof. By Theorem 5.0.1, L(E/K ⊗ χ, s) is holomorphic for every irreducible

character χ of G. Hence by Proposition 3.0.2, Fω exists.

Now suppose ω is real. We have the factorization,

L(E/F, s) =
∏

χ ∈ Irr(G)

L(E/K ⊗χ, s)χ(1)

Since ords=ω L(E/F, s) = 2, then there exists χ ∈ Irr(G) such that

ords=ω L(E/K ⊗χ, s)≥ 1. Since ω is real, we have

ords=ω L(E/K ⊗χ, s) = ords=ω L(E/K ⊗χ, s)

Case I : χ ̸= χ, then χ(1) = 1 = χ(1). Thus χ is one dimensional. Fω being

the fixed field of kerχ ∩ kerχ = kerχ, is thus cyclic.
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Case II : χ = χ, and χ(1) = 1, thus χ is a real, irreducible linear character. Since

the order is 2, there exists another such character. Hence Gal(Fω)/K is

a subgroup of Z2 ⊕Z2.

Case III : χ = χ, and χ(1) = 2.

Since Fω is the fixed field of kerχ, Gal(Fω/K) admits a faithful, degree

2, irreducible representation. Therefore we know that G/Z(G) is iso-

morphic to a finite subgroup of PGL2(C) and therefore is isomorphic to

Cn, D2n, A4, S4 or A5. (e.g. see [24]). By the solvability condition A5 can

be eliminated. Since χ = χ̄, Z(G) = {1} or Z/2Z.

Now G/Z(G) cannot be cyclic as that will imply G is abelian.

Note that when Z(G) = {1}, then the only possibilities are D2n and S4.

(Note that A4 does not have any 2 dimensional irreducible representa-

tions.) Moreover, by Proposition 24 of [22], P. 61, (take A= A4⇒ H =
A4) if G ∼= S4 then there exists an irreducible representation ψ of A4

such that χ = IndS4
A4
ψ with ψ(1) = 1. But we also know that every

representation of A4 of dimension 1 has V4 in its kernel. Since V4 Ã S4,

hence V4 ⊂ ker IndS4
A4
ψ ⊂ kerχ, contradicting faithfulness.

□

The celebrated Birch–Swinnerton-Dyer conjecture, predicts that the rank of

E(K) equals the order of vanishing of L(E/K , s) at s = 1. Thanks to the spectac-

ular work of Gross and Zagier [11] and Kolyvagin [16], this is known for K =Q
and ords=1 L(E/Q, s)≤ 1. In the next theorem we prove a slight generalization

to this result, namely, we look at the case when rank increases by 1 in a solvable

extension.

Theorem 6.0.2. Let K/Q be a solvable Galois extension.

(i) rank E(K) = rank E(Q) + 1⇒ ords=1 L(E/K , s)≥ ords=1 L(E/Q, s) + 1

(ii) If L(E/Q⊗χ, s) is holomorphic at s = 1, for every irreducible character

χ of Gal(K/Q) and ords=1 L(E/K , s) = ords=1 L(E/Q, s) + 1, then

rank E(K)≥ rank E(Q) + 1

In both cases equality holds if the algebraic and the analytic minimal subfields

are equal.

Proof. (i) Let M be the algebraic minimal subfield. By Theorem 1.1, M is a

quadratic extension of Q, say of discriminant D. Consider the twisted elliptic

curve ED. Then we have

rk E(M) = rk E(Q) + rk ED(Q)
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(e.g. see Proposition 20.5.4, P357 of [13] ). Thus, rk ED(Q) = 1= ords=1 L(ED/Q, s).
We also have L(E/M , s) = L(E/Q, s) · L(ED/Q, s). Thus,

ords=1 L(E/K , s)≥ ords=1 L(E/M , s) = ords=1 L(E/Q, s) + 1

where the first inequality follows from the Aramata-Brauer type result in Theo-

rem 4.1.1. Note that equality holds if M = F1, the analytic minimal subfield at

s = 1.

(ii) The holomorphy condition ensures that the analytic minimal subfield exists.

Now from the factorization

L(E/K , s) =
∏

χ

L(E/Q⊗χ, s)χ(1)

Since the order of zero increases by 1, we see that there is a non-trivial character

χ of degree 1 such that L(E/Q⊗χ, 1) = 0. Since the analytic minimal subfield

F1 is the fixed field of kerχ, thus it is cyclic. Moreover, as ords=1 L(E/Q ⊗
χ, s) = ords=1 L(E/Q ⊗ χ̄, s) ⇒ χ = χ̄ ⇒ [F1 : Q] = 2. So like before, sup-

pose F1 is of discriminant D. Since, L(E/F1, s) = L(E/Q, s) · L(ED/Q, s) ⇒
ords=1 L(ED/Q, s) = 1⇒ rank ED(Q) = 1 Thus,

rank E(K)≥ rank E(F1) = rank E(Q) + 1

□

Corollary 6.0.3. If ords=1 L(E/Q, s) = rank E(Q) and K/Q is a quadratic ex-

tension, then

rank E(K) = rank E(Q) + 1⇐⇒ ords=1 L(E/K , s) = ords=1 L(E/Q) + 1

The corollary follows from the fact that in this case both the minimal subfields

are equal to K . Also note that it is unconditional, as holomorphy of L(E/Q⊗χ, s)
is known in cyclic case.

Remark 6.0.1. The holomorphy condition of L(E/Q⊗χ) in (ii) can be relaxed

if E has complex multiplication. We discuss this next.

Let G be a finite group and H ≤ G be any subgroup. For every complex

character ψ of H, we attach a complex number n(H,ψ) satisfying :

(i) n(H,ψ+ψ′) = n(H,ψ) + n(H,ψ′)
(ii) n(G, IndG

H ψ) = n(H,ψ)

Define θH =
∑

ψ∈Irr(G) n(H,ψ)ψ, then we have, θG|H = θH . (see [19]).

Murty proves in [20] (Theorem 14)
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Theorem 6.0.4. (M. Ram Murty) Suppose n(H, 1) ≥ n(G, 1) for every cyclic

subgroup H of G. Then
∑

χ ̸=1

|n(G,χ)|2 ≤ (n(G, reg)− n(G, 1))2

where ‘reg’ denotes the regular character of G.

We also note the following theorem from [19] (Theorem 1)

Theorem 6.0.5. (M. Ram Murty and V. Kumar Murty)

Let E be an elliptic curve defined over K . Suppose that E has complex multi-

plication (CM) and F is a finite extension of K . If F is contained in a solvable

extension of K , then L(E/F, s)/L(E/K , s) is entire.

Combining these two we have

Theorem 6.0.6. Let K/Q be a solvable Galois extension. Suppose that E/Q has

complex multiplication. If ords=1 L(E/K , s) = ords=1 L(E/Q, s) + 1, then

rank E(K)≥ rank E(Q) + 1

Proof. We take n(H,ψ)= ords=1 L(E/KH⊗ψ, s). For any cyclic subgroup H of G,

L(E/KH⊗ψ, s) is entire, moreover by the above Theorem 6.0.5, L(E/KH , s)/L(E/Q, s)
is entire and so conditions of the Theorem 6.0.4 are satisfied. In particular,

∑

χ ̸=1

n(G,χ)2 ≤ 1

Thus it must be that, there existsχ1, linear, such that n(G,χ1) = 1 and n(G,χ) =
0 for all χ ̸= 1,χ1. That is, L(E/Q ⊗ χ, s) is holomorphic at s = 1 for all

irreducible characters χ of G. Rest follows from Theorem 6.0.2 (ii). □
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