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ABSTRACT. Let C be a smooth projective algebraic curve over Q. Then the L-function of C is
conjectured to have analytic continuation on the entire complex plane. Deligne conjectured that the
value of the L-function evaluated at critical points is an algebraic number times the determinant of
the real period matrix associated with C. The periods of such curves are also expressible in terms of
hypergeometric functions.
In this paper we initially look at Picard family of genus 3 curves. We verify Deligne’s conjecture
for certain genus 2 and genus 3 curves. We also explore period matrices expressible as hypergeo-
metric functions. Eventually we examine Gaussian hypergeometric functions and give a finite field
analogue of Appel-Lauricella hypergeometric functions.

1. INTRODUCTION

Let C be a smooth projective curve of genus g defined over a number field K. For our purposes
we restrict ourself to Q. The L-function of C is an analytic function of one complex variable s
defined as an Euler product

L(C, s) :=
∏
p

Lp(C, s)

where p is taken over all primes in K. The local L-factor is of the form

Lp(C, s) :=
1

f((Np)−s)

where Np is the norm of p and f(t) ∈ Z[t] is a polynomial with integer coefficients depending on
p. An invariant associated with C is the conductor of the L-function. It is a positive real number
of the form

N :=
∏
p

Npfp

Here fp , the exponent at p is a non-negative integer which is zero for all but finitely many p.
Some nice examples are ( for K=Q )

The Riemann-Zeta function : (N = 1)

ζ(s) =
∏
p

(1− p−s)−1 =
∞∑
n=1

n−s

The Dirichlet L-function: (N : a divisor of k)

L(χ, s) =
∏
p

(1− χ(p)p−s)−1 =
∞∑
n=1

χ(n)n−s

1
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where χ is a Dirichlet Character ( modulo k say)i.e. a group homomorphism from (Z/kZ)? to the
non-zero Complex numbers, roots of unity to be specific.
The study of L-functions is still an area with many conjectures. For example, it is conjectured that
L(C, s) has analytic continuation to the entire complex plane and has a functional equation of the
form

Λ(C, s) = ±Λ(C, 2− s),
where

Λ(C, s) = N s/2(2π)−gsΓ(s)gL(C, s)

Also there are conjectures on values of an L-function at critical points. e.g. Deligne’s Conjecture,
Birch and Swinnerton-Dyer Conjecture. One of our aim of this project is to computationally verify
some of these conjectures for certain family of curves. We first consider the Picard family.
The Picard Family of curves is given by :

C := y3 = x(1− x)(1− λx)(1− µx)

This is a two parameter family. Calculating the genus of the curve from the Riemann- Hurwitz
formula

2− 2g = 2n−
∑

e

where e is the ramification number, e =( number of sheets coming together - 1)
so

2− 2g = 2 ∗ 3− 10

=⇒ g = 3

This is a genus 3 curve. Therefore for any prime p, the Zeta function over the finite field Fp is
known to be of the form

Z(C/Fp, t) = exp(
∞∑
ν=1

Nν
tν

ν
) (1)

where Nν is the number of points on the curve over the finite field Fpν including the point at
infinity. Now from Dwork’s theorem on rationality of zeta functions (1) is known to be a rational
function. Moreover for ‘good’ primes p,( C having good reduction at p) i.e. primes not dividing
the conductor N it is known to be of the following form :

Z(C/Fp, t) =
1 + at+ bt2 + ct3 + pbt4 + p2at5 + p3t6

(1− t)(1− pt)
(2)

Thus local Lp factor is given by

Lp(C, s) =
1

1 + ap−s + bp−2s + cp−3s + pbp−4s + p2ap−5s + p3p−6s
(3)

Thus to compute the L-function we wish to compute the number of points on the curve C over
Fq and thereby compute the coefficients a, b, c.
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2. CHARACTER SUMS

The first approach taken to the study of point counting on curves over finite fields is to express
the number of points in terms of character sums.

Definition 2.1. Let G be a finite Abelian group (more generally, locally compact Abelian group).
A character is a homomorphism

χ : G→ C∗1 = {z ∈ C : |z| = 1}

Note that the set of characters denoted by Ĝ is also an abelian group.

Example 2.2. G = Z/n. Let ζn ∈ C∗1 be a primitive n-th root of unity. For instance ζn = e
2πi
n .

Fix an integer j ∈ Z/n The homomorphism χj : Z/n → C∗1 by χj(a) = ζ ian defines a character.
In fact, j 7→ χj : Z/n→ Ẑ/n is an isomorphism.

Let Fq be a finite field where q = pa for some prime p. The Fq/Fp is a Galois extension and
Gal(Fq/Fp) ∼ Ca =< 1, φ, φ2, ..., φa−1 > where φ is the Frobenius map. There are two types of
characters of the field Fq for the two groups namely additive and the multiplicative group. The
multiplicative group (F∗q,×) ' Cq−1 = {1, α, α2, ..., αq−1}. So the set of characters of this group,
called the multiplicative characters, are given by F̂∗q = {χi : i ∈ Z/q − 1} ,where χi(z) = ζ

ilogα(z)
q−1 .

One may very easily prove that for any finite abelian group G and any function f : G→ C can be
uniquely expressed as a linear combination of characters:

f(a) =
∑
χ∈Ĝ

f̂(χ)χ(a)

where the function f̂ : Ĝ→ C is caled the Fourier transform and is given by:

f̂(χ) =
1

|G|
∑
g∈G

f(g)χ(g)

Using the above fact one can prove the following:

Proposition 2.3. Let a ∈ F∗q and fix an integer N ≥ 1. Define : f(a) := #{x ∈ F?q : xN = a}.
{For simplicity we may assume that N | (q − 1)} thenf(a) =

∑
χN=1 χ(a) i.e. sum over all the

characters of F∗q such that χN = 1.

Proof. Result : Suppose χ : G→ C∗1 is a character and χ 6= Id then
∑

g∈G χ(g) = 0.

Since χ 6= Id, ∃g0 ∈ G such that χ(g0) 6= 1 and therefore as g runs over all elements of
G, gg0 also runs over all elements of G. Thus

S =
∑
g∈G

χ(g) =
∑
g∈G

χ(gg0) = χ(g0)
∑
g∈G

χ(g) = χ(g0)S =⇒ S = 0.

as N | q − 1 we have an exact sequence,

1→ µN → F∗q → (F∗q)N → 1
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where µN is the cyclic group of order N . (F∗q)N is cyclic of order q−1
N

. Again by Fourier analysis,
we have : f(a) =

∑
χ∈Ĝ f̂(χ)χ(a) and f̂(χ) = 1

q−1

∑
b∈G f(b)χ(b)

By the above exact sequence, f(b) =

{
0 if b /∈ (F∗q)N

N if b ∈ (F∗q)N

So, f̂(χ) =
N

q − 1

∑
b∈(F∗

q)N

χ(b)

But from the result above, the sum is 0 if χ |(F∗
q)N 6= Id.

And if χ |(F∗
q)N= Id ⇐⇒ χN = 1 and the sum becomes N

q−1
·#(F∗q)N = N

q−1
q−1
N

= 1

Therefore f̂(χ) =

{
0 if χN 6= Id

1 if χN = Id

So, f(a) =
∑
χ

f̂(χ)χ(a) =
∑
χN=1

χ(a)

�

Thus we see that character sums are an important tool for point counting. We now state some
more facts which will help us further to compute the number of points and hence the local L-factors
for the Picard family of curves. Consider a more general family,X : yn = f(x). One may consider
it as a covering of the projective line P1

x by the canonical projection mapping (x, y) 7→ x. Then the
zeta function can be factored as follows :

Z(X/Fp, t) = Z(P1/Fp, t) · L(X/P1, t)

The function field Fp(x, y) of the curve X is a Galois extension over Fp(x), the function field of
P1
x. If p ≡ 1(mod n) then the ground field contains nth roots of unity and thus the automorphisms

are given by (x, y) 7→ (x, ζny). And the L-factor in the zeta function can further be written as :

L(X/P1
x, t) =

∏
χ:µn→C∗

1
χ 6=Id

L(P1
x, χ)

The Nν in a zeta function as in (1) can be written as Nν =
∑

t∈X(Fpν ), let us define Sν(χ) =∑
z∈X(Fpν ). The it is known that

L(P1, χ) = exp(
∞∑
ν=1

Sν(χ)
tν

ν
)

This is in fact a polynomial in t. Another way is to look at it as the characteristic equation of a
Frobenius map acting on the cohomology H1

ét(X ⊗Q,Ql) i.e.

det(1− tρ(Frobp) | H1
ét(X ⊗Q,Ql)) where ρ : Gal(Q/Q)→ GL(H1

ét(X ⊗Q,Ql))
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3. COMPUTATIONS USING CHARACTER SUMS

We have written codes in sage to implement character sums to compute the coefficients for the
local L-factors for Picard family of curves. Now observe that since it is a genus 3 curve therefore
we only have to compute coefficients a, b, c. Thus we need only consider characters in Fpν , for
ν = 1, 2, 3. Here is the code to do so:

K = CyclotomicField(3);

def ptshyper(p, q,r):

F = GF(p)
F1 = GF(pˆ2, ’a’)
F2 = GF(pˆ3, ’c’)

def chi(x):
z = K.gen()
b = F.multiplicative_generator()
if x==0:

return 0
return zˆ(x.log(b))

def chi1(x):
z = K.gen()
a = F1.multiplicative_generator()
if x==0:

return 0
return zˆ(x.log(a))

def chi2(x):
z = K.gen()
c = F2.multiplicative_generator()
if x==0:

return 0
return zˆ(x.log(c))

if p%3 == 1:
return [p, sum([chi(x*(1-x)*(1-q*x)*(1-r*x)) for i,x in

enumerate(F)]) + sum([chi(x*(1-x)*(1-q*x)*(1-r*x))ˆ2 for i,x
in enumerate(F)]),sum([chi1(x*(1-x)*(1-q*x)*(1-r*x)) for i,x
in enumerate(F1)]) + sum([chi1(x*(1-x)*(1-q*x)*(1-r*x))ˆ2 for
i,x in enumerate(F1)]),sum([chi2(x*(1-x)*(1-q*x)*(1-r*x)) for
i,x in enumerate(F2)]) + sum([chi2(x*(1-x)*(1-q*x)*(1-r*x))ˆ2
for i,x in enumerate(F2)])]

if p%3 == 2:
return [p,0,sum([chi1(x*(1-x)*(1-q*x)*(1-r*x)) for i,x in

enumerate(F1)]) + sum([chi1(x*(1-x)*(1-q*x)*(1-r*x))ˆ2 for
i,x in enumerate(F1)]),0]
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This function in the code takes input the prime p, λ as ’q’ and µ as ’r’ and returns
N1, N2, N3.Observe that if p ≡ 2(mod 3) then there is no character of order 3 in Fpν for odd
ν. The next function calls this ’ptshyper’ function and finally returns the prime along with the
coefficients a, b, c.

def coefsl(p,q,r):
PointList = ptshyper(p,q,r)
N1 = PointList[1]
N2 = PointList[2]
N3 = PointList[3]
return [p, N1, (N1ˆ2+N2)/2, ((N1)ˆ3+(3*N1*N2)+(2*N3))/6]

Example 3.1. Here we consider the Picard family with parameters λ = 2, µ = 3,

C := y3 = x(1− x)(1− 2x)(1− 3x)

2 and 3 are probably going to be ’bad primes’, so we compute from 5.

for n in range(5, 42):
if is_prime(n):

print n, coefsl(n, 2, 3)

The following output was given :

5 [5, 0, -3, 0]
7 [7, -3, -6, 43]
11 [11, 0, 6, 0]
13 [13, -3, 12, -47]
17 [17, 0, -3, 0]
19 [19, 6, -15, -200]
23 [23, 0, 42, 0]
29 [29, 0, 33, 0]
31 [31, 3, -12, 25]
37 [37, 6, 30, 358]
41 [41, 0, -3, 0]

To check correctness we also have tested the coefficients for Weil number. For exaample, for the
prime 13 :

R.<t> = PolynomialRing(Complexes()); R
f = 1+(-3)*t+(12)*tˆ2+(-47)*tˆ3+13*(12)*tˆ4+13ˆ2*(-3)*tˆ5+13ˆ3*tˆ6; f

2197.00000000000*tˆ6 - 507.000000000000*tˆ5 + 156.000000000000*tˆ4 -
47.0000000000000*tˆ3 + 12.0000000000000*tˆ2 - 3.00000000000000*t +
1.00000000000000
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rts = f.roots(); rts

[(-0.173471517687619 - 0.216404042185517*I, 1), (-0.173471517687619 +
0.216404042185517*I, 1), (0.0410260210616175 - 0.274299002037792*I,
1), (0.0410260210616175 + 0.274299002037792*I, 1),
(0.247830112010617 - 0.124512298604924*I, 1), (0.247830112010617 +
0.124512298604924*I, 1)]

68

[CC(sqrt(13))*rts[i][0].abs() for i in [0..3] ]

[1.00000000000000, 1.00000000000000, 1.00000000000000,
1.00000000000000]

But it seemed that working with character sums is very computationally expensive. even for the
prime 43 it takes a very long time. And in order to compute or at least get an idea of the global L-
function we need to compute the local L-factors for decently large number of primes.So we tried to
come up with something different, and magma seems to provide a built-in zeta function calculator.

R<t> := PolynomialRing(Rationals());
K<z> := CyclotomicField(3);
S<t> := PolynomialRing(K);

zet := function(n)
P<x,y,z> := ProjectiveSpace(GF(n),2);
C := Curve(P,yˆ3*z -x*(z-x)*(z-2*x)*(z-3*x));
return [n, Coefficient(Numerator(ZetaFunction(C, 1)), 1),

Coefficient(Numerator(ZetaFunction(C, 1)), 2),
Coefficient(Numerator(ZetaFunction(C, 1)), 3)];

end function;

For the same example we have written codes and the output is given in Appendix A.
It’s quite much faster for small primes but again for primes larger than 200 it takes much longer.

Our initial plan was to compute enough number of local L-factors and then put them in the ‘lfun’
package in pari gp which will in turn compute the global L-function. But due to inability to
compute enough data and technological constraints of the package we couldn’t. Even computing
the conductor for curves of this family is challenging.
In fact computing conductors in general is non-trivial. Though one can easily compute the
conductor for elliptic curves from the famous “Tate’s Algorithm”. There is also an algorithm
available for genus 2 hyperelliptic curves given by Qing Liu, it doesn’t compute the exponent
of the prime 2 in the conductor though. Therefore we decided to start looking at more simpler
families like hyperelliptic family of curves and curves of Complex multiplication.

It so happens that magma has a built-in function to generate L-functions for Hyperelliptic
curves.
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Example 3.2. Consider the hyperelliptic curveC := y2 = x6−14x5+61x4−106x3+66x2−8x−3,
This is a genus 2 curve. We computed its conductor to be 961. We can simply compute the L-
function of this curve in magma by ‘LSeries’ function. We evaluated the value of the L-function at
1, which came out to be: 0.449287723876040786113329668188

We conclude this section by looking at ‘bad primes’ and what may the form of the local factors
look like for such primes for simpler curves.

Let E be an elliptic curve over Q with Weierstrass form i.e.

f(x, y) = y2 + a1xy + a3y − x3 − a2x
2 − a4x− a6

which has a singular point at P (x0, y0) say. One can write the Taylor series of f at (x0, y0) as
follows:

f(x, y)− f(x0, y0) = λ1(x− x0)2 + λ2(x− x0)(y− y0) + λ3(y− y0)2− (x− x0)3 where λi ∈ Q
(which can be factored as)

= [(y − y0)− α(x− x0)][(y − y0)− β(x− x0)]− (x− x0)3 where α, β ∈ Q

P is a node or a cusp according as α 6= β or α = β. Now let us assume that E/Q has a minimal
model with same Weierstrass form with coefficients in Z. Let p be a prime. By reducing each
coefficient ai modulo p we obtain a cubic curve Ẽ over Fp. If Ẽ is non-singular then we say that
E has good reduction at p. Otherwise it has bad reduction at p. If Ẽ has a cusp, E has additive
reduction at p. If Ẽ has a node then E has a multiplicative reduction at p. If the slopes of the
tangent lines are in Fp then the reduction is said to be split multiplicative.

Fact : E/Q with coefficients in Z, If E has bad reduction at p then p|∆ where ∆ is the
discriminant of the curve.
We can apply the same theory to hyperelliptic curve as well. Consider the following hyperelliptic
curve:

C := y2 = x(1− x)(1− 2x)(1− 3x)(1− 5x)

=⇒ y2 = 30x5 − 61x4 + 41x3 − 11x2 + x

the only primes dividing the conductor are 2,3,5. The form of the local L−factors for the primes
except 2 can be guessed as follows:
For the prime 5, the equation becomes : y2 = −x4 + x3 − x2 + x, Normalization leads to a genus
1 elliptic curve E := y2 = x3 + x2 + x+ 1. Therefore

L(C/F5, t) = L(E/F5) · L(“torus”, t)

Now L(E/F5) = 1 − at + 5t2 where a = 5 + 1 − #E(F5) = 6 − 8 = −2 and L(“torus”, t) is
(1 + t) or (1− t)
For the prime 3, the equation becomes : y2 = −x4−x3+x2+x, Normalization leads to y2 = x−x2

which is a genus zero curve. So

L(C/F3, t) = L(“torus”, t)

which in this case can be (1 + t)2, (1− t)2 , (1 + t2), (1− t2)
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4. PERIOD MATRICES

Consider any algebraic curve X/Q of genus g. Then

dim H0(X,Ω1
X/Q) = g and dim H1(X,Z) = 2g

Therefore ∃ g holomorphic 1-forms ω1, ω2, ..., ωg defined over Q which are linearly independent.
i.e. they form a basis of the space H0(X,Ω1

X/Q). One can determine these differential 1-forms by
using the technique of “divisors” from algebraic geometry. Let {α1, α2, ..., αg, β1, β2, ..., βg} be a
simplectic basis of H1(X,Z). Then

Mg×2g =



∫
α1
ω1 · · ·

∫
αg
ω1

∫
β1
ω1 · · ·

∫
βg
ω1∫

α1
ω2 · · ·

∫
αg
ω2

∫
β1
ω2 · · ·

∫
βg
ω2

· ·
· · · · ·
· ·∫

α1
ωg · · ·

∫
αg
ωg

∫
β1
ωg · · ·

∫
βg
ωg


M is called the period matrix. These integrals in the matrix M can be expressed in terms of
Hypergeometric functions.
Consider a curve X := f(x, y) = 0 over Q and the complex conjugation map (x, y) 7→ (x, y).
Since coefficients of X are in Q if f(x, y) = 0 then f(x, y) = 0 i.e. (x, y) is also in the variety.
This is a C∞-function. Let us call it F∞ and consider

F∞ : H1(X,Q)→ H1(X,Q)

The matrix of this transformation is :(
0 Ig
Ig 0

)
∼
(
Ig 0
0 −Ig

)
So, H1(X,C) = H1,0 ⊕H0,1

Deligne’s Conjecture : Let M be a “motive” and L(M, s) be the motivic L-function. Then there
exist two complex numbers c±(M) such that for any “critical point” m we have

L(M,m)

c±(M)
∈ Q

Note : Recall the local L-factors can be realised as the characteristic equations of certain Frobenius
map acting on certain étale cohomology. A motive M/Q of dimension n gives rise to a Galois
representation

ρ : Gal(Q/Q)→ GL(H1
ét(M ⊗Q,Ql)) = GLn(Ql)

and the motivic L-function is given by

L(M, s) =
∏
p

1

det(1− p−sρ(Frob)p|H1
ét(M ⊗Q,Ql))

with modifications at finitely many primes p where M has bad reduction.
Now for algebraic curves, the complex number c± can be computed as the determinant of matrices
with real periods as entries. For a genus g curve we can take g linearly independent elements from
the space H1(X,Z) which are fixed under the transformation F∞, and integrating the 1-forms over
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these cycles will give real periods. Thus we can get a g × g matrix with real entries. Moreover in
such cases the ratio of the special value of the L-function and c± (which is now just the determinant
of the g × g matrix) is infact conjectured to be a rational number.
Using magma we computed some period matrices and special values of L-functions given below.

Example 4.1. Consider the curve as in example 3.2 where we already evaluated the L-function at
1. Here we give the code to compute the period matrix.

C<I> := ComplexField(50);
R<x> := PolynomialRing(C);

f:= xˆ6-14*xˆ5+61*xˆ4-106*xˆ3+66*xˆ2-8*x-3; f

A := AnalyticJacobian(f) ; A

M:= BigPeriodMatrix(A); M

X := Matrix(C, 2, 4, [Real(M[i][j]) : j in [1..4], i in [1..2]]); X
Y := Matrix(C, 2, 4, [Im(M[i][j]) : j in [1..4], i in [1..2]]); Y

S := BlockMatrix(2,1, [X, Y]);S
T := BlockMatrix(2,1, [X, -Y]);T

F := Sˆ-1*T;
expr := Fˆ2; expr

seq := [1: i in [1..4]]; seq
Id := DiagonalMatrix(C, 4, seq); Id

Z := F+Id; Z

K := Matrix(C, 4, 4, [Round(Z[i][j])/2 : j in [1..4], i in [1..4]]); K1

N :=M*K; N
list := [Real(Ntr[1][1]), Real(Ntr[1][2]), Real(Ntr[3][1]),

Real(Ntr[3][2])]; list
W := Matrix(C, 2, 2, list); W

Delta:=Determinant(W); Delta

(outputs of the above commands are given in the Appendix - B)

Magma computes something called a big period matrix (since the curve has genus 2, it’s
a 4 × 2 matrix) for us, from which we compute ‘N’. Then from ‘N’ we choose 2 linearly
independent columns to make ‘W’, and finally compute its determinant. Which in this case was :

3.3696579290703058958499725114094293500583517690928
and finally the ratio of L(C, 1) as computed in example 3.2 and the above determinant was:

0.133333333333333333333333333333 ∼ 2

15
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So it satisfies the Deligne’s conjecture.

Example 4.2.

C := y2 = x8 − 4x7 − 6x6 − 4x5 − 9x4 + 4x3 − 6x2 + 4x+ 1

Interestingly this is a genus 3 curve. We computed its period matrix and the value of its L-function
using magma and the ratio was given to be :

-0.562499999999999999999999999999 ∼ − 9

16

In the next example we compute the period matrix in a different and more theoretical way. But
before that let us introduce hypergeometric functions.

4.1. Hypergeometric functions. The hypergeometric function in one parameter is given by :

pFq

(
a1 a2 · · · ap

b1 · · · bq

∣∣∣∣z) =
∞∑
k=0

(a1)k(a2)k · · · (ap)k
(b1)k(b2)k · · · (bq)k

xk

k!

where (a)k denotes the Pochhammer symbol given by (a)k = Γ(a+k)
Γ(a)

= a(a+ 1) · · · (a+ k− 1)

This sort of hypergeometric functions arises as solutions to certain differential equations. Also
some specific type of integrals can also be expressed in terms of these function. Here are some
examples :

p+1Fp

(
a1 a2 · · · ap + 1

b1 · · · bp

∣∣∣∣z) is a solution to the differential equation :

[θ(θ + b1 − 1) · · · (θ + bp − 1)− z(θ + a1)(θ + a2) · · · (θ + ap+1)]y = 0 where θ = z
d

dz

Also there are integrals that can be expressed in terms of Hypergeometric functions.
Euler’s integral formula: when Re(b1)>Re(a2)> 0

2F1

(
a1 a2

b1

∣∣∣∣z) =
Γ(b1)

Γ(a2)Γ(b1 − a2)

∫ 1

0

xa2−1(1− x)b1−a2−1(1− zx)−a1dx (4)

More generally,

r+1Fr

(
a1 a2 · · · ar + 1

b1 · · · br

∣∣∣∣λ) =

Γ(br)

Γ(ar+1)Γ(br − ar+1)

∫ 1

0

xar+1−1(1− x)br−ar+1−1
rFr−1

(
a1 a2 · · · ar

b1 · · · br−1

∣∣∣∣λx) dx (5)

Example 4.3. Consider the Legendre family of elliptic curves:

Eλ/Q := y2 = x(1− x)(1− λx), λ 6= 0, 1

This is a genus 1 curve. Thus if α, β be two basis elements then, H1(Eλ,Z) = Zα ⊕ Zβ. Us-
ing the concept of “divisors” we can find a differential form ω = dx

y
which forms a basis of

H0(Eλ,Ω
1
Eλ/Q). So that the period matrix is given by( ∫

α
ω
∫
β
ω
)
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Then
∫
α
ω ,
∫
β
ω are linear combination of

∫ 1

0
ω ,
∫ 1
λ

1
ω ,
∫∞

1
ω etc. One may realise these periods

as hypergeometric functions.∫ 1

0

ω =

∫ 1

0

dx

y
=

∫ 1

0

dx√
x(1− x)(1− λx

=

∫ 1

0

x−
1
2 (1− x)−

1
2 (1− λx)−

1
2

from equation (4) which is simply

=
Γ(1

2
) · Γ(1

2
)

Γ(1)
2F1

(
1
2

1
2
1

∣∣∣∣λ) = π · 2F1

(
1
2

1
2
1

∣∣∣∣λ)

We conclude this section by looking at another example for which we use such integration of
differential forms to compute period matrix and verify Deligne’s conjecture.

Example 4.4. Consider the curve

C := y2 = 1− x5 over Q
(This type of curves are called Complex Multiplication.) To include the point at infinity we make
a transformation x = 1

ξ
and multiply both sides by ξ6 to get

y2ξ6 = ξ6 − ξ

=⇒ (yξ3)2 = ξ6 − ξ
=⇒ η2 = ξ6 − ξ where η = yξ3

Rewriting, C := y2 = x6 − x
the 1-forms are : ω1 = dx

y
and ω2 = xdx

y

Now λ =
∫ 1

0
ω1 and µ =

∫ 1

0
ω2 gives periods. Let ζ be a primitive 5th root of unity. Then∫ ζ

0

dx√
x6 − x

=

∫ 1

0

d(tζ)√
ζ6t6 − tζ

since ζ5 = 1, we get
ζ√
ζ

∫ 1

0

dt√
t6 − t

= ζ−
1
2

∫ 1

0

dt√
t6 − t

= ζ−
1
2λ

In the above equation we really have a choice of sign there. To make it real we take its conjugate
circle i.e.

∫ ζ−1

0
ω1 into count and substract them. We do similar computations to obtain

∫ ζ
0
ω2 =

ζ−
3
2 . Thus the real period matrix is given by :

M =

(
λ µ

(ζ
1
2 − ζ− 1

2 )λ (ζ
3
2 − ζ− 3

2 )µ

)
Below are the computational results :

det(M) = 10.314071041733177562983179141216861078040501050212

L(C, 1) = 1.0314071041733177562983179141216861078043261206521



L-FUNCTIONS OF THE PICARD FAMILY OF CURVES 13

L(C, 1)

det(M)
= 0.10000000000000000000000000000000000000002676107521 ∼ 1

10

(pari gp was used to evaluate the integrals.)
We can express the periods in terms of what is known as Appell-Lauricella hypergeometric

functions defined as :

F

(
a b1 · · · bn

c

∣∣∣∣z1, z2, · · · , zn
)

=
∞∑

i1,i2,...,in=0

(a)i1+i2+...+in(b1)i1 · · · (bn)in
(c)i1+i2+...+ini1!i2!...in!

zi11 ...z
in
n

the integral representation is given by,

=
Γ(c)

Γ(a)Γ(c− a)

∫ 1

0

ta−1(1− t)c−a−1(1− z1t)
−b1 · · · (1− znt)−bndt (6)

So for the above example:

λ =

∫ 1

0

dx√
x− x6

=

∫ 1

0

x−
1
2 (1− x)−

1
2 (1− ζx)−

1
2 (1− ζ2x)−

1
2 (1− ζ3x)−

1
2 (1− ζ4x)−

1
2

= π · F
(

1
2

1
2

1
2

1
2

1
2
1

∣∣∣∣ζ, ζ2, ζ3, ζ4

)

5. GAUSSIAN HYPERGEOMETRIC FUNCTIONS

An important observation for the example (4.3) is if we truncate this hypergeometric series,

2F1

(
1
2

1
2
1

∣∣∣∣λ)
p

:=

p−1∑
n=0

(
(−1

2
)n

n!

)2

λn = Hp(λ) (say)

This is called the Hasse invariant. Then

Theorem 5.1.
ap(λ) ≡ (−1)

p−1
2 Hp(λ) (mod p)

Where ap(λ) = p+ 1−Np, Np being the number of points on Eλ over Fp.

Some of such results on truncation of hypergeometric functions is studied in the paper [1].
Considering its importance we looked at finite field analogues of such hypergeometric functions

called the Gaussian hypergeometric functions. Many results in which is due to Greene[2]. We also
apparently came up with a new result.

Definition 5.2. Let χ ∈ F̂∗q be a multiplicative character. We extend it to all Fq by setting χ(0) = 0.
Let Tr be trace map form Fq to Fp. Let ζ be a primitive p-th root of unity. Then the Gauss sum is
defined as :

G(χ) =
∑
t∈Fq

χ(t)ζTr(t)

Definition 5.3. Let A,B ∈ F̂∗q by convention we set A(0) = 0. Then the Jacobi sum is defined as :

J(A,B) =
∑
z∈Fq

A(z)B(1− z)
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Greene introduces a binomial symbol:(
A
B

)
=
B(−1)

q
J(A,B)

Having defined it this way one can prove certain finite field analogues of identities satisfied by
hypergeometric functions. The Gauss sum defined above is analogous to the classical Γ−function.
Even an analogue for the the integral formula as in (4) is as follows :

2F1

(
A B

C

∣∣∣∣z)
p

= ε(x)
BC(−1)

q

∑
y∈Fq

B(y)BC(1− y)A(1− zy)

where ε(x) is the trivial character.
Greene also gives a generalised definition for r+1Fr-type hypergeometric functions and proves

analogous identities.
But everything in Green’s paper [2] is restricted to one parameters. What we do is try and come up
with finite field analogues of Appel-Lauricella hypergeometric functions as in (6) and try to prove
a similar identity for the integral form as in (7).

Definition 5.4. We define the finite field Appell-Lauricella series to be

F

(
A B1 · · · Bn

C

∣∣∣∣z1, . . . , zn

)
=

qn

(q − 1)n

∑
χ1,...,χn∈F̂∗

q

(
Aχ

Cχ

)(
B1χ1

χ1

)
· · ·
(
Bnχn
χn

)
χ1(z1) · · ·χn(zn),

(7)
where χ =

∏
i χi and A,Bi, C ∈ F̂∗q , with zi ∈ F∗q .

Theorem 5.5. (Fourier Transform)
Let g :

(
F∗q
)n → Fq. Then

g(z1, . . . , zn) =
∑

χ1,...,χn∈F̂∗
q

ĝ(χ1, . . . , χn)χ1(z1) . . . χn(zn),

where ĝ is given by

ĝ(χ1, . . . , χn) =
1

(q − 1)n

∑
y1,...,yn∈F∗

q

g(y1, . . . , yn)χ1(y1) · · ·χn(yn) (8)

is the Fourier transform of g.

Conjecture :
The finite field Appell-Lauricella series can be written as

F

(
A B1 · · · Bn

C

∣∣∣∣z1, . . . , zn

)
= K·ε(z1 · · · zn)

∑
y∈Fq

A(y)ĀC(1− y)B1(1− z1y) · · ·Bn(1− zny).

(9)
where K is some constant to be determined.

Proof. We use Fourier transforms. First, fix A,Bi, C and let g(z1, . . . , zn) denote the RHS of (9).
Then examining the RHS of (9), we see that it suffices to show

ĝ(χ1, . . . , χn) =
qn

(q − 1)n

(
Aχ

Cχ

)(
B1χ1

χ1

)
· · ·
(
Bnχn
χn

)
. (10)
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We first simplify the RHS of (11). We have(
Aχ

Cχ

)(
B1χ1

χ1

)
· · ·
(
Bnχn
χn

)
=
Cχ(−1)

q
J(Aχ,Cχ)

χ1(−1)

q
J(B1χ1, χ1) · · · χn(−1)

q
J(Bnχn, χn)

=
C(−1)

qn+1

∑
y∈P1(Fq)

Aχ(y)Cχ(1− y)
n∏
i=1

 ∑
ti∈P1

(Fq)

Biχi(ti)χi(1− ti)

.

=
C(−1)

qn+1

∑
y∈P1(Fq)

Aχ(y)Cχ(1− y)
n∏
i=1

 ∑
ti∈P1(Fq)

Bi(ti)χi

(
ti

1− ti

), (11)

where χ =
∏

i χi.
Returning to ĝ, let z =

∏
i zi, we use (8) to get

ĝ(χ1, . . . , χn)

=
K

(q − 1)n

∑
z1,...,zn∈P1(Fq)

ε(z)
∑

y∈P1(Fq)

A(y)AC(1− y)B1(1− z1y) · · ·Bn(1− zny)χ1(z1) · · ·χn(zn)

=
K

(q − 1)n

∑
y∈P1(Fq)

A(y)AC(1− y)
n∏
i=1

(∑
zi 6=0

Bi(1− ziy)χi(zi)

)
.

We now change variables by ti = 1
1−ziy . This means Bi(1− ziy) = B(ti). From 1

zi
= yti

ti−1
, we get

χi(zi) = χi

(
yti
ti − 1

)
= χi(y)χi

(
ti

ti − 1

)
.

Putting all this into the expression for ĝ, we get

ĝ(χ1, . . . , χn) =
K

(q − 1)n

∑
y∈P1(Fq)

A(y)AC(1− y)χ(y)
n∏
i=1

 ∑
ti∈P1(Fq)

Bi(ti)χi

(
ti

ti − 1

).
=
Kχ(−1)

(q − 1)n

∑
y∈P1(Fq)

A(y)AC(1− y)χ(y)
n∏
i=1

 ∑
ti∈P1(Fq)

Bi(ti)χi

(
ti

1− ti

) (12)

where again we set χ =
∏

i χi. Comparing (11) and (12), we must only show that

qnC(−1)

qn+1(q − 1)n

∑
y∈P1(Fq)

Aχ(y)Cχ(1− y) =
Kχ(−1)

(q − 1)n

∑
t∈P1(Fq)

A(t)AC(1− t)χ(t). (13)

i.e.
C(−1)

q

∑
y∈P1(Fq)

Aχ(y)Cχ(1− y) = Kχ(−1)
∑

t∈P1(Fq)

A(t)AC(1− t)χ(t). (14)

Simplifying the LHS of (14) gives

C(−1)

q

∑
y∈P1(Fq)

Aχ(y)Cχ(1− y) =
C(−1)

q

∑
y∈P1(Fq)

A(y)C

(
1

1− y

)
χ

(
y

1− y

)
, (15)
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and simplifying the RHS of (14) gives

Kχ(−1)
∑

t∈P1(Fq)

A(t)AC(1− t)χ(t) = Kχ(−1)
∑

t∈P1(Fq)

A

(
t

1− t

)
C(1− t)χ(t). (16)

Changing variables by t 7→ −t in (16) gives

Kχ(−1)
∑

t∈P1(Fq)

A

(
t

1− t

)
C(1− t)χ(t) = KA(−1)

∑
t∈P1(Fq)

A

(
t

1 + t

)
C(1 + t)χ(t). (17)

Finally, making the change of variables t = y
1−y (equivalently y = t

1+t
) in (17) gives

KA(−1)
∑

t∈P1(Fq)

A

(
t

1 + t

)
C(1 + t)χ(t) = KA(−1)

∑
y∈P1(Fq)

A(y)C

(
1

1− y

)
χ

(
y

1− y

)
,

which is precisely the RHS of (15) if we set K = AC(−1)
q

�

So we have the following theorem :

Theorem 5.6.

F

(
A B1 · · · Bn

C

∣∣∣∣z1, . . . , zn

)
=
AC(−1)

q
·ε(z1 · · · zn)

∑
y∈Fq

A(y)ĀC(1− y)B1(1− z1y) · · ·Bn(1− zny).
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7. APPENDIX - A

Output of example 3.1 using the inbuilt function in magma :

[zet1(n) : n in [5..150] | IsPrime(n) ]

[
[ 5, 0, -3, 0 ],
[ 7, -3, -6, 43 ],
[ 11, 0, 6, 0 ],
[ 13, -3, 12, -47 ],
[ 17, 0, -3, 0 ],
[ 19, 6, -15, -200 ],
[ 23, 0, 42, 0 ],
[ 29, 0, 33, 0 ],
[ 31, 3, -12, 25 ],
[ 37, 6, 30, 358 ],
[ 41, 0, -3, 0 ],
[ 43, 3, -30, -389 ],
[ 47, 0, 78, 0 ],
[ 53, 0, -3, 0 ],
[ 59, 0, 42, 0 ],
[ 61, -3, 12, -533 ],
[ 67, -3, -6, 583 ],
[ 71, 0, 78, 0 ],
[ 73, 15, 120, 1105 ],
[ 79, -3, 138, -137 ],
[ 83, 0, -3, 0 ],
[ 89, 0, 159, 0 ],
[ 97, 6, -33, 52 ]
[ 101, 0, 231, 0 ],
[ 103, 6, 93, 1312 ],
[ 107, 0, -84, 0 ],
[ 109, 3, -102, -695 ],
[ 113, 0, 195, 0 ],
[ 127, 12, -3, -2072 ],
[ 131, 0, 186, 0 ],
[ 137, 0, 141, 0 ],
[ 139, -21, 264, -2135 ],
[ 149, 0, 177, 0 ]
]
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8. APPENDIX - B

The output of the example 4.1 is given below along with the code written in Magma.

P<x> := PolynomialRing(Integers());

C1 := HyperellipticCurve( xˆ6-14*xˆ5+61*xˆ4-106*xˆ3+66*xˆ2-8*x-3); C1;

Hyperelliptic Curve defined by yˆ2 = xˆ6 - 14*xˆ5 + 61*xˆ4 - 106*xˆ3 +
66*xˆ2 - 8*x - 3 over Rational Field

Conductor(C1)
961

L:= LSeries(C1)
Sp :=Evaluate(L,1); Sp

0.449287723876040786113329668188

C<I> := ComplexField(50);
R<x> := PolynomialRing(C);
f1:= xˆ6-14*xˆ5+61*xˆ4-106*xˆ3+66*xˆ2-8*x-3; f1

xˆ6 - 14.000000000000000000000000000000000000000000000000*xˆ5 +
61.000000000000000000000000000000000000000000000000*xˆ4 -
106.00000000000000000000000000000000000000000000000*xˆ3 +
66.000000000000000000000000000000000000000000000000*xˆ2 -
8.0000000000000000000000000000000000000000000000000*x -
3.0000000000000000000000000000000000000000000000000

A1 := AnalyticJacobian(f1) ; A1

Analytic Jacobian of the hyperelliptic curve defined by yˆ2 = xˆ6 -
14.000000000000000000000000000000000000000000000000*xˆ5 +
61.000000000000000000000000000000000000000000000000*xˆ4 -
106.00000000000000000000000000000000000000000000000*xˆ3 +
66.000000000000000000000000000000000000000000000000*xˆ2 -
8.0000000000000000000000000000000000000000000000000*x -
3.0000000000000000000000000000000000000000000000000 over Complex field
of precision 50

M1:= BigPeriodMatrix(A1); M1

[-0.76965110808045461237496888101583970284939544827801 -
2.2868326219178581582338078236741664752637308033310*I
0.73969084944133416177055129411900632636900509843295 -
0.55767424871489916880323153485854981346112473151680*I
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-1.3482951308280612327081107305413816651897761192623 +
6.9500740446536324110568293491705142296497784169705E-50*I
0.51310073872030307491664592067722646856626363218419 -
6.1217716654627016108041592079835720586631073088875E-50*I]
[2.0224426962420918490621660958120724977846641788920 -
2.8445068706327573270370393585327162887248555348441*I
4.6235294152317903184574740411496869579097090287722 -
2.2868326219178581582338078236741664752637308033212*I
-0.83519439210775815779146480986415519662351248707813 -
3.2073176521106347753686437605817782545782362561261E-50*I
-1.3482951308280612327081107305413816651897761192620 +
2.2718500035783662992194559970787595969929173480893E-50*I]

X := Matrix(C, 2, 4, [Real(M1[i][j]) : j in [1..4], i in [1..2]]);
Y := Matrix(C, 2, 4, [Im(M1[i][j]) : j in [1..4], i in [1..2]]);
S := BlockMatrix(2,1, [X, Y]);
T := BlockMatrix(2,1, [X, -Y]);
F := Sˆ-1*T;
expr := Fˆ2; expr

[0.99999999999999999999999999999999999999999999999999
-4.6769003371410090597704336478383946210649966100060E-52
1.0718830837300702358082987851767025189001483995098E-99
-1.3715848695387299786589402579664091513422919937874E-99]
[1.2543279018254735084461328657528269071410073458129E-50
1.0000000000000000000000000000000000000000000000000
-7.9919668229200433459295566054271767436332583587829E-100
1.8287798260516399715452536772885455351230559917165E-99]
[2.5444047524244225190189215296055093076448736374121E-50
-2.1739607168472320190390849718210409964150164498616E-50
1.0000000000000000000000000000000000000000000000000
-4.4194193312414150423314815398417929795557507912624E-51]
[0.00000000000000000000000000000000000000000000000000
-1.2829270608442539101474575042327113018312945024504E-49
1.2550203431434793094533482155747753272003328792452E-50
1.0000000000000000000000000000000000000000000000000]

seq := [1: i in [1..4]];
Id := DiagonalMatrix(C, 4, seq);
Z := F+Id;
K1 := Matrix(C, 4, 4, [Round(Z[i][j])/2 : j in [1..4], i in [1..4]]);
N :=M1*K1; N

[-0.76965110808045461237496888101583970284939544827628 +
9.1826574981940524162062388119753580879946609633314E-50*I
0.73969084944133416177055129411900632636900509843297 +
4.8793180966763054104251539962031588021831006467631E-50*I
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-1.3482951308280612327081107305413816651897761192623 +
6.9500740446536324110568293491705142296497784169705E-50*I
0.51310073872030307491664592067722646856626363218419 -
6.1217716654627016108041592079835720586631073088875E-50*I]
[2.0224426962420918490621660958120724977846641788930 -
3.4077750053675494488291839956181393954893760221339E-50*I
4.6235294152317903184574740411496869579097090287722 -
8.6864853077996358499567435182423161061493898603414E-51*I
-0.83519439210775815779146480986415519662351248707813 -
3.2073176521106347753686437605817782545782362561261E-50*I
-1.3482951308280612327081107305413816651897761192620 +
2.2718500035783662992194559970787595969929173480893E-50*I]

%We see that Column 1 and 3 are linearly independent

list := [Real(Ntr[1][1]), Real(Ntr[1][2]), Real(Ntr[3][1]),
Real(Ntr[3][2])];

W := Matrix(C, 2, 2, list); W

[-0.76965110808045461237496888101583970284939544827628
2.0224426962420918490621660958120724977846641788930]
[-1.3482951308280612327081107305413816651897761192623
-0.83519439210775815779146480986415519662351248707813]

Delta:=Determinant(W); Delta

3.3696579290703058958499725114094293500583517690928

Sp/Delta

0.133333333333333333333333333333
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